1. Reference problem#
1.1. Geometry#
Width: \(a\mathrm{=}0.05m\)
Height: \(h\mathrm{=}0.2m\)

1.2. Material properties#
The following convention is adopted in order to distinguish the parameters of the hot phase (austenitic) from the parameters of the cold phases (ferrito-pearlitic, bainitic and martensitic):
= |
Characteristics relating to the austenitic phase |
|
= |
characteristics relating to the ferrito-pearlitic, bainitic and martensitic phases |
|
Metallurgical parameters:
TRC to model a bainitic metallurgical evolution, over the entire structure, of the form:
\({Z}_{\mathit{fbm}}=\{\begin{array}{ccc}0.& \mathit{si}t\le {\tau }_{1}& {\tau }_{1}=60s\\ \frac{t-{\tau }_{1}}{{\tau }_{2}-{\tau }_{1}}& \mathit{si}{\tau }_{1}\le t<{\tau }_{2}& {\tau }_{2}=112s\\ 1.& \mathit{si}t\ge {\tau }_{2}& \end{array}\)
Thermal parameters:
Calorific capacity: \(\rho {C}_{p}=2.{10}^{6}{\mathit{J.m}}^{-3}\mathrm{.}°{C}^{-1}\)
Conductivity: \(\lambda =9999.9{\mathit{W.m}}^{-1}\mathrm{.}°{C}^{-1}\)
Thermo-mechanical parameters:
Thermo-elastic parameters:
Young’s module \(E=200000{10}^{6}\mathit{Pa}\)
Poisson’s ratio \(\nu =0.3\)
Thermal expansion coefficients
\({\alpha }_{\mathit{fbm}}=15.{10}^{-6}°{C}^{-1}\) \({\alpha }_{\mathit{aust}}=23.5{10}^{-6}°{C}^{-1}\)
Expansion coefficient definition temperature: \({T}_{\mathit{ref}}=900°C\)
Reference thermal deformation state: \(\Delta {\epsilon }_{f\gamma }^{{T}_{\mathit{ref}}}=2.52{10}^{-3}\)
Elastic limit:
\({\sigma }_{y}^{\mathit{fbm}}={\sigma }_{0}^{\mathit{fbm}}+{s}^{\mathit{fbm}}(T-{T}^{0})\) with \({\sigma }_{0}^{\mathit{fbm}}=530.{10}^{6}\mathit{Pa}\) and \({s}^{\mathit{fbm}}=0.5{10}^{6}\mathit{Pa.}°{C}^{-1}\)
\({\sigma }_{y}^{\mathit{aust}}={\sigma }_{0}^{\mathit{aust}}+{s}^{\mathit{aust}}(T-{T}^{0})\) with \({\sigma }_{0}^{\mathit{aust}}=400.{10}^{6}\mathit{Pa}\) and \({s}^{\mathit{aust}}=0.5{10}^{6}\mathit{Pa.}°{C}^{-1}\)
Thermoplastic parameters (law with linear work hardening)
Tangent modules: \({E}_{T}^{\mathit{fbm}}\) and \({E}_{T}^{\mathit{aust}}\) are chosen such that:
\({H}^{\mathit{fbm}}={H}_{0}^{\mathit{fbm}}+{\lambda }^{\mathit{fbm}}(T-{T}^{0})\) with \({H}_{0}^{\mathit{fbm}}=-50.{10}^{6}\mathit{Pa}\) and \({\lambda }^{\mathit{fbm}}=-5.{10}^{6}\mathit{Pa.}°{C}^{-1}\)
\({H}^{\mathit{aust}}={H}_{0}^{\mathit{aust}}+{\lambda }^{\mathit{aust}}(T-{T}^{0})\) with \({H}_{0}^{\mathit{aust}}=1250.{10}^{6}\mathit{Pa}\) and \({\lambda }^{\mathit{aust}}=-5.{10}^{6}\mathit{Pa.}°{C}^{-1}\)
We remind you that \(H=\frac{{\mathit{EE}}_{T}}{E-{E}_{T}}\)
Parameters for transformation plasticity:
Reminder:
In the case of a metallurgical evolution of the bainitic type, the model of transformation plasticity is as follows: \({\dot{\epsilon }}^{\mathit{pt}}=\frac{3}{2}\stackrel{̃}{\sigma }{k}^{\mathit{fbm}}{F}^{\text{'}}({Z}_{\mathit{fbm}}){\dot{Z}}_{\mathit{fbm}}\) |
Model parameters: \({k}^{\mathit{fbm}}=1.{10}^{-10}{\mathit{Pa}}^{-1}\) and \({F}^{\text{'}}({Z}_{\mathit{fbm}})=2(1-{Z}_{\mathit{fbm}})\) |
1.3. Boundary conditions and loads#
\({u}_{Y}\mathrm{=}0\) on the \(\mathit{AB}\) side; \({u}_{X}=0\) in \(A\).
\(T\mathrm{=}{T}^{0}+\mu t\), \(\mu \mathrm{=}\mathrm{-}5°{\mathit{C.s}}^{\mathrm{-}1}\) throughout the structure.
Ratings: \(\begin{array}{c}T({\tau }_{1})={T}_{1}\\ T({\tau }_{2})={T}_{2}\end{array}\)
The load on the structure is due to thermal and metallurgical expansion phenomena constrained in the \(z\) direction by the condition of plane deformations.
1.4. Initial conditions#
\({T}^{0}=900°C={T}^{\mathit{ref}}\)