6. D modeling#
6.1. Characteristics of modeling#
Meshing identical to that of modeling A.
Linear kinematic work hardening: META_P_CL
6.2. Tested sizes and results#
Identification |
Reference |
Test |
Tolerance |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=47s\) |
0 |
|
0.1% |
\(\chi\) \(t\mathrm{=}47s\) |
0 |
|
0.1% |
\({\sigma }_{\mathit{zz}}\) \(t\mathrm{=}47s\) |
282.106 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}\) \(t=47s\) |
-4.125 10—3 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t=47s\) |
-0.0055225 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t=47s\) |
0.00141 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t=47s\) |
0 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t\mathrm{=}48s\) |
3.2653 10—3 |
|
|
\(\chi\) \(t\mathrm{=}48s\) |
1 |
|
0.1% |
\({\sigma }_{\mathit{zz}}\) \(t\mathrm{=}48s\) |
288.106 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}\) \(t=48s\) |
-9.3469 10—4 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t\mathrm{=}48s\) |
-0.00564 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t\mathrm{=}48s\) |
0.004705 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t\mathrm{=}48s\) |
0.0032653 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t\mathrm{=}60s\) |
0.04 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=64s\) |
0.04 |
|
0.1% |
\(\chi\) \(t\mathrm{=}64s\) |
0 |
|
0.1% |
\({\sigma }_{\mathit{zz}}\) \(t\mathrm{=}64s\) |
360.106 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}\) \(t\mathrm{=}64s\) |
3.466810—2 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t\mathrm{=}64s\) |
-0.007117 |
|
0.2% |
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t\mathrm{=}64s\) |
0.04180 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t\mathrm{=}64s\) |
0.04 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t\mathrm{=}114s\) |
0.04107 |
|
0.1% |
\(\chi\) \(t\mathrm{=}114s\) |
1 |
|
0.1% |
\({\sigma }_{\mathit{zz}}\) \(t\mathrm{=}114s\) |
360.106 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}\) \(t=114s\) |
0.036841 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t\mathrm{=}114s\) |
-0.00603 |
|
0.2% |
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t\mathrm{=}114s\) |
0.0428701 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t\mathrm{=}114s\) |
0.04107 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=176s\) |
0.06206 |
|
|
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=206s\) |
0.062069 |
|
0.1% |
\({\sigma }_{\mathit{zz}}\) \(t=206s\) |
180.106 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}\) \(t=206s\) |
0.052288 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t=206s\) |
-0.01068 |
|
0.2% |
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t=206s\) |
0.062968 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t=206s\) |
0.062069 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=251s\) |
0 |
|
0.1% (absolute) |
\({\sigma }_{\mathit{zz}}\) \(t=251s\) |
-90.106 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}\) \(t=251s\) |
-0.01113 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t=251s\) |
-0.01068 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t=251s\) |
-0.00045 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t=251s\) |
0 |
|
0.1% (absolute) |
\({\epsilon }_{\mathit{zz}}^{p}\) \(t=296s\) |
-0.062069 |
|
0.1% (absolute) |
\({\sigma }_{\mathit{zz}}\) \(t=296s\) |
-360. 106 |
ANALYTIQUE |
0.1% |
\({\epsilon }_{\mathit{zz}}\) \(t=296s\) |
-0.07455 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{th}}\) \(t=296s\) |
-0.01068 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{meca}}\) \(t=296s\) |
-0.063869 |
|
0.1% |
\({\epsilon }_{\mathit{zz}}^{\mathit{plas}}\) \(t=296s\) |
-0.062069 |
|
0.1% (absolute) |