1. Reference problem#
1.1. Geometry#
1.2. Material properties#
Modeling A
\(E=1.0\mathrm{MPa}\)
\(\nu =0.3\)
\(k=1.0W/(\mathrm{m.}°C)\)
\({C}_{p}=0J/(°{\mathrm{C.m}}^{3})\)
B Modeling
\({E}_{L}=1.0\mathrm{MPa}\)
\({E}_{T}=0.9\mathrm{MPa}\)
\({E}_{N}=0.8\mathrm{MPa}\)
\({\nu }_{\text{LT}}=0.1\)
\({\nu }_{\text{LN}}=0.25\)
\({\nu }_{\mathrm{TN}}=0.3333333\)
\(k=1.0W/(\mathrm{m.}°C)\)
\({C}_{p}=0J/(°{\mathrm{C.m}}^{3})\)
1.3. Boundary conditions and loads#
3D mechanics:
2D mechanics, plane constraints:
Axis: \(x=0\) Node: \(O\) |
\(\mathrm{dy}=0\) |
(these conditions do not correspond to the application of the homogenization method). |
Loading: deformation
3D and 2D thermal:
Plan \(x=0\) |
|
(this condition does not correspond to the application of the homogenization method). |
Loading: gradient
imposed uniform.