1. Reference problem#

1.1. Geometry#

_images/100068F8000069D5000024E6F4E9873107F659D0.svg

1.2. Material properties#

Modeling A

\(E=1.0\mathrm{MPa}\)

\(\nu =0.3\)

\(k=1.0W/(\mathrm{m.}°C)\)

\({C}_{p}=0J/(°{\mathrm{C.m}}^{3})\)

B Modeling

\({E}_{L}=1.0\mathrm{MPa}\)

\({E}_{T}=0.9\mathrm{MPa}\)

\({E}_{N}=0.8\mathrm{MPa}\)

\({\nu }_{\text{LT}}=0.1\)

\({\nu }_{\text{LN}}=0.25\)

\({\nu }_{\mathrm{TN}}=0.3333333\)

\(k=1.0W/(\mathrm{m.}°C)\)

\({C}_{p}=0J/(°{\mathrm{C.m}}^{3})\)

1.3. Boundary conditions and loads#

  • 3D mechanics:

Plan \(z=0\):

\(\mathrm{dz}=0\)

\(\mathrm{dx}=0\), \(\mathrm{dy}=0\)

for membrane loading;

for flexure loading

Maps \(y=0\), \(y=1\):

\(\mathrm{dy}=0\)

Maps \(x=0\), \(x=1\):

\(\mathrm{dx}=0\)

Bow: \(O\)

\(\mathrm{dz}=0\)

(for flexure loading only)

Loading:

_images/Object_1.svg

\({z}_{0}=\mathrm{1m}\)

  • 2D mechanics, plane constraints:

Axis: \(x=0\) Node: \(O\)

\(\mathrm{dx}=0\)

\(\mathrm{dy}=0\)

(these conditions do not correspond to the application of the homogenization method).

Loading: deformation

_images/Object_2.svg
  • 3D and 2D thermal:

Plan \(x=0\)

\(\mathrm{temp}=0\)

(this condition does not correspond to the application of the homogenization method).

Loading: gradient

_images/Object_3.svg

imposed uniform.