2. Benchmark solution#
2.1. Calculation method used for the reference solution#
2.1.1. Modeling A#
The reference solution comes from WILSON and YU [bib1]:
In plane deformations, the IRWIN formula gives:
or numerically:
2.1.2. B modeling#
The reference solution for the stress intensity factor for mode I \({K}_{I}\) is expressed as follows [bib3]:
\({K}_{I}=\mathrm{\sigma }\sqrt{\mathrm{\pi }a}F\left(\frac{a}{W}\right)\)
with \(F\left(\frac{a}{W}\right)=\mathrm{1,122}-\mathrm{0,231}\left(\frac{a}{W}\right)+\mathrm{10,550}{\left(\frac{a}{W}\right)}^{2}-\mathrm{21,710}{\left(\frac{a}{W}\right)}^{3}+\mathrm{30,382}{\left(\frac{a}{W}\right)}^{4}\)
The \(G\) energy return rate is obtained thanks to Irwin’s formula: \(G=\frac{\left(1-{\mathrm{\nu }}^{2}\right)}{E}{K}_{I}^{2}\).
2.2. Benchmark results#
2.2.1. Modeling A#
The reference results are those from the reference solution from WILSON and YU [bib1]:
2.2.2. B modeling#
The reference results are those from the reference solution from [bib3]: \(G=\mathrm{572,05}J\mathrm{.}{m}^{-2}\)
2.3. Bibliographical references#
The Use of J-Integrals in thermal stress crack problems - International Journal of Fracture (1979) WILSON and YU.
Complementary qualification of codes INCA/MAYA in linear thermo-elasticity. Technical note DRE/STRE/LMA 84/598
Tada, P. Paris, G. Irwin, G. Irwin, The Stress Analysis of Cracks Handbook, 3rd edition, 2000