3. Modeling A#
3.1. Characteristics of modeling#
2D axisymmetric finite elements
The discretized geometry is shown above:
\(\mathrm{Bord}\) |
|
\(\mathrm{BC}\) |
|
\(\mathrm{DA}\) |
|
\(\mathrm{AB}\) |
|
\(\mathrm{CD}\) |
|
3.2. Characteristics of the mesh#
The mesh is regular: 4 elements in the height, 8 in the thickness.
Number of knots: 121
Number of meshes and type: 32 QUAD8
3.3. Boundary conditions while on the go#
3.3.1. Gravity#
Move \(\mathrm{DY}\) is stuck at point \(F\) alone.
3.3.2. Rotation#
Move \(\mathrm{DY}\) is stuck on sides \([\mathrm{AB}]\) (GROUP_NO = “BAS”) and on \([\mathrm{CD}]\) (GROUP_NO = “HAUT”).
3.3.3. Thermal expansion case no. 1#
Move \(\mathrm{DY}\) is stuck all over the structure.
3.3.4. Thermal expansion case no. 2#
Move \(\mathrm{DY}\) is stuck on sides \([\mathrm{AB}]\) (GROUP_NO = “BAS”) and \([\mathrm{CD}]\) (GROUP_NO = “HAUT”).
3.4. Model A results#
Identification |
Knot (Knit) |
Value tested |
Reference |
Gravity |
\(\mathrm{N78}\) |
\(\mathrm{DX}\) \((\mathrm{mm})\) |
—2.34000 10—8 |
\(\mathrm{N120}\) |
\(\mathrm{DY}\) \((\mathrm{mm})\) |
—1.185 10—9 |
|
\(\mathrm{N13}\) |
\(\mathrm{DY}\) \((\mathrm{mm})\) |
1.2150 10—9 |
|
\(\mathrm{N78}(\mathrm{M13})\) |
\(\mathrm{SIYY}\) \((\mathrm{MPa})\) |
8.0000 10—4 |
|
Uniform rotation - centrifugal force |
\(\mathrm{N120}\) |
\(\mathrm{DX}\) \((\mathrm{mm})\) |
—2.94240 10—7 |
\(\mathrm{N13}\) |
\(\mathrm{DX}\) \((\mathrm{mm})\) |
2.88010 10—7 |
|
\(\mathrm{N120}(\mathrm{M1})\) |
\(\mathrm{SIYY}\) \((\mathrm{MPa})\) |
9.94880 10—4 |
|
\(\mathrm{N13}(\mathrm{M32})\) |
\(\mathrm{SIYY}\) \((\mathrm{MPa})\) |
9.26310 10—4 |
|
Dilation case 1 |
\(\mathrm{N120}\) |
\(\mathrm{DX}\) \((\mathrm{mm})\) |
1.056145 10—6 |
\(\mathrm{N13}\) |
\(\mathrm{DX}\) \((\mathrm{mm})\) |
1.110317 10—6 |
|
\(\mathrm{N120}(\mathrm{M1})\) |
\(\mathrm{SIYY}\) \((\mathrm{MPa})\) |
1.4321427 |
|
Dilation case 2 |
\(\mathrm{N120}\) |
\(\mathrm{DX}\) \((\mathrm{mm})\) |
2.53500 10—5 |
\(\mathrm{N120}(\mathrm{M1})\) |
\(\mathrm{SIYY}\) \((\mathrm{MPa})\) |
—2.00000 10—1 |