15. Appendix#
15.1. Uniform rotation loading around \(\mathrm{OZ}\)#
15.1.1. 2D axisymmetric model#
The centrifugal force density is: \(\rho {\Omega }^{2}r{e}_{r}\).
The following boundary conditions are considered:
\({u}_{z}(r,z)=0\) in \(z=0\) and \(z=L\)
Displacement is postulated in the form:
\({u}_{r}=u(r)\)
\({u}_{z}={u}_{\theta }=0\)
So:
\({\varepsilon }_{\mathrm{rr}}=u\text{'}\); \({\varepsilon }_{\theta \theta }=\frac{u}{r}\); \({\varepsilon }_{\mathrm{zz}}={\varepsilon }_{\mathrm{rz}}={\varepsilon }_{\theta z}={\varepsilon }_{r\theta }=0\)
Hollow cylinder geometry:
\(R=20\mathrm{mm}\)
\(h=1\mathrm{mm}\)
Elastic stresses are expressed as:
\({\sigma }_{\mathrm{rr}}=\frac{E}{(1+\nu )(1-2\nu )}[(1-\nu )u\text{'}+\nu \frac{u}{r}]\)
\({\sigma }_{\theta \theta }=\frac{E}{(1+\nu )(1-2\nu )}[(1-\nu )\frac{u}{r}+\nu u\text{'}]\)
\({\sigma }_{\mathrm{zz}}=\frac{\nu E}{(1+\nu )(1-2\nu )}[\frac{u}{r}+u\text{'}]\)
The radial equilibrium equation is written as:
\({(r{\sigma }_{\mathrm{rr}})}_{,r}-{\sigma }_{\theta \theta }=-\rho {\Omega }^{2}{r}^{2}\)
So:
\((\frac{(\mathrm{ru})\text{'}}{r})\text{'}=\frac{-(1+\nu )(1-2\nu )}{(1-\nu )E}\rho {\Omega }^{2}r\) \(\mathrm{éq}1.1-1\)
Note:
\(\frac{u}{r}+u\text{'}=\frac{(\mathrm{ru})\text{'}}{r}\)
Hence the general solution:
\(u(r)=\frac{-(1+\nu )(1-2\nu )}{(1-\nu )E}\rho {\Omega }^{2}\frac{{r}^{3}}{8}+\mathrm{Ar}+\frac{B}{r}\) \(\mathrm{éq}1.1-2\)
The constraints are then:
\({\sigma }_{\mathrm{rr}}(r)=\frac{-3-2\nu }{1-\nu }\rho {\Omega }^{2}\frac{{r}^{2}}{8}+\frac{E}{(1+\nu )(1-2\nu )}(A-(1-2\nu )\frac{B}{{r}^{2}})\)
\({\sigma }_{\theta \theta }(r)=\frac{-1+2\nu }{1-\nu }\rho {\Omega }^{2}\frac{{r}^{2}}{8}+\frac{E}{(1+\nu )(1-2\nu )}(A-(1-2\nu )\frac{B}{{r}^{2}})\) \(\mathrm{éq}1.1-3\)
\({\sigma }_{\mathrm{zz}}(r)=\frac{-\nu }{1-\nu }\rho {\Omega }^{2}\frac{{r}^{2}}{2}+\frac{2\nu E}{(1+\nu )(1-2\nu )}A\)
The stress boundary conditions are:
\({\sigma }_{\mathrm{rr}}=0\) in \(r=R\pm \frac{h}{2}\)
We note:
\(x=\frac{h}{\mathrm{2R}}\)
Thanks to \([\mathrm{éq}1.1-3]\), we get:
\(B=\frac{(3-2\nu )(1+\nu )}{8(1-\nu )E}\rho {\Omega }^{2}{R}^{4}{(1-{x}^{2})}^{2}\)
then:
\(A=\frac{(3-2\nu )(1+\nu )(1-2\nu )}{4(1-\nu )E}\rho {\Omega }^{2}{R}^{2}(1-{x}^{2})\)
Digital application:
\(\rho =8.10–\mathrm{6 }\mathrm{kg}/{\mathrm{mm}}^{3}\)
\(\Omega =\mathrm{1 }{s}^{-1}\)
\(E=2.105N/{\mathrm{mm}}^{2}\)
\(\nu =0.3\)
From where: \(A={\mathrm{7.13588.10}}^{-9}{\mathrm{mm}}^{2}\)
\(B={\mathrm{3.561258.10}}^{-\mathrm{6 }}{\mathrm{mm}}^{2}\)
Note:
\(\frac{(1+\nu )(1-2\nu )}{(1-\nu )E}\rho \frac{{\Omega }^{2}}{8}=3.714286E-12{\mathrm{mm}}^{2}\)
\(\frac{\nu }{1-\nu }\rho \frac{{\Omega }^{2}}{2}=1.714286E-6{\mathrm{MPa.mm}}^{2}\)
So:
in inner skin: \(\{\begin{array}{}{u}_{r}=2.9424{E}^{-7}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}=0.99488{E}^{-3}\mathrm{Mpa}\end{array}\)
in outer skin: \(\{\begin{array}{}{u}_{r}=2.8801{E}^{-7}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}=0.92631{E}^{-3}\mathrm{Mpa}\end{array}\)
15.1.2. Axisymmetric shell model#
Centrifugal force is equivalent to distributed pressure:
\(p=\rho {\Omega }^{2}\mathrm{hR}(1+\frac{{h}^{2}}{{\mathrm{12R}}^{2}})\)
The solution is membrane-bound, the normal balance is written as:
\({N}_{\theta \theta }=\mathrm{pR}\)
Membrane deformation is: \({E}_{\theta \theta }=\frac{w}{R}\), while \({E}_{\theta \theta }=0={K}_{\theta \theta }={K}_{\mathrm{zz}}\).
In elasticity:
\({N}_{\theta \theta }=\frac{\mathrm{Eh}}{1-{\nu }^{2}}{E}_{\theta \theta }\); \({N}_{\mathrm{zz}}=\nu {N}_{\theta \theta }\); \({M}_{\alpha \beta }=0\)
Hence the solution (deflection and normal circumferential force):
\(p=\rho {\Omega }^{2}\mathrm{hR}(1+\frac{{h}^{2}}{{\mathrm{12R}}^{2}})\); \({N}_{\theta \theta }=\rho {\Omega }^{2}{R}^{2}h(1+\frac{{h}^{2}}{{\mathrm{12R}}^{2}})\)
The axial stress is equal to:
\({\sigma }_{\mathrm{zz}}=\nu \rho {\Omega }^{2}{R}^{2}(1+\frac{{h}^{2}}{{\mathrm{12R}}^{2}})\) (constant in thickness)
If you do not take into account the metric correction, you must remove the term \((1+\frac{{h}^{2}}{{\mathrm{12R}}^{2}})\) in the previous expressions.
Digital application (without metric correction) :
\(p=\mathrm{1,600000}.10–4\mathrm{MPa}\)
\(w=\mathrm{2,912000}.10–7\mathrm{mm}\)
\({N}_{\mathrm{zz}}=\mathrm{0,96000}.10–3N/\mathrm{mm}\)
\({\sigma }_{\mathrm{zz}}=\mathrm{0,96000}.10–3\mathrm{MPa}\)
15.2. Gravity loading#
15.2.1. 2D axisymmetric model#
The force density is: \(-\rho g{e}_{z}\) (vertical gravity).
The following boundary conditions are considered:
\({U}_{z}(r,z)=0\) in \(r=R\) and \(z=0\) (circle of support)
with uniform traction: \({\sigma }_{\mathrm{zz}}(r,z)=\rho gL\) in \(z=L\), balancing the weight.
We postulate the elastic solution of the type:
\(\sigma =(\begin{array}{ccc}0& 0& 0\\ 0& 0& 0\\ 0& 0& {\sigma }_{\mathrm{zz}}\end{array})\)
so that:
\({\sigma }_{\mathrm{zz}}(r,z)=\rho gL\); \({\varepsilon }_{\mathrm{rz}}=0={\varepsilon }_{r\theta }={\varepsilon }_{\theta z}\)
We observe as follows:
\({u}_{r,r}=\frac{{u}_{r}}{r}\iff {u}_{r}(r,z)=-\nu A\text{'}(z)r\)
Then:
\(\begin{array}{}-\nu A\text{'}(z)={\varepsilon }_{\mathrm{rr}}=-\nu {\varepsilon }_{\mathrm{zz}}\iff {u}_{z,z}(r,z)=A\text{'}(z)\\ \iff {u}_{r}(r,z)=A(z)+B\end{array}\)
From \({\varepsilon }_{\mathrm{rz}}=0\), we get:
\(B\text{'}(r)-\nu \mathrm{rA}\text{'}\text{'}(z)=0\)
either:
\(A\text{'}\text{'}(z)=\mathrm{cste}=\alpha\); \(B\text{'}(r)=\alpha \nu r\)
From the stress limit conditions, we obtain:
\(A(z)=\frac{\rho g{z}^{2}}{2E}+\beta\); \(B(r)=\nu \frac{\rho g{r}^{2}}{2E}\)
Finally, \(\beta\) checks: \(\beta =-\nu \rho g\frac{{R}^{2}}{2E}\)
So:
\(\begin{array}{}{u}_{r}(r,z)=\frac{-\nu \rho gzr}{E};{u}_{z}(r,z)=\frac{\rho g}{2E}({z}^{2}+\nu ({r}^{2}–{R}^{2}))\\ {\sigma }_{\mathrm{zz}}(r,z)=\rho gz\end{array}\) \(\mathrm{éq}2.1-1\)
Digital app
\(g=\mathrm{10 }N/\mathrm{kg}\)
\(\rho ={8.10}^{-\mathrm{6 }}\mathrm{kg}/{\mathrm{mm}}^{3}\)
\(R=\mathrm{20 }\mathrm{mm}\)
\(L=\mathrm{10 }\mathrm{mm}\)
\(E={2.10}^{\mathrm{5 }}N/{\mathrm{mm}}^{2}\)
\(\nu =0.3\)
\(h=\mathrm{1 }\mathrm{mm}\)
in inner skin: \(\{\begin{array}{}{u}_{r}(L)=-2.34000{E}^{-8}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}(L)=8.0000{E}^{-4}\mathrm{Mpa}\\ {u}_{z}(O)=-1.185000{E}^{-9}\mathrm{mm}\end{array}\)
in outer skin: \(\{\begin{array}{}{u}_{r}(L)=-2.46000{E}^{-8}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}(L)=8.0000{E}^{-4}\mathrm{Mpa}\\ {u}_{z}(O)=1.215000{E}^{-9}\mathrm{mm}\end{array}\)
15.2.2. Axisymmetric shell model#
A vertical pull is exerted in \(z=L\):
\(F=\rho ghL\)
Gravity leads to vertical force:
\(f=-\rho gh{e}_{z}\)
The boundary condition on the support circle is: \({u}_{z}(z)=0\) in \(z=0\)
The solution is membrane-bound, the vertical balance is written as:
\({N}_{\mathrm{zz},z}=\rho gh\)
Plus: \({N}_{\theta \theta }=0\). In elasticity, we then deduce:
\({E}_{\theta \theta }=\frac{w}{R}=\frac{-\nu {N}_{\mathrm{zz}}}{\mathrm{Eh}}=\frac{-\nu \rho gz}{E}\)
\({E}_{\mathrm{zz}}={u}_{z,z}=\frac{{N}_{\mathrm{zz}}}{\mathrm{Eh}}\Rightarrow {u}_{z}(z)=\frac{\rho g}{2E}{z}^{2}\)
The axial stress is:
\({\sigma }_{\mathrm{zz}}=\rho gz\) (constant in thickness)
Digital application:
\(F={8.10}^{-4}{\mathrm{N.mm}}^{-1}\)
\(w(L)=-{\mathrm{2.4000.10}}^{-8}\mathrm{mm}\)
\({N}_{\mathrm{zz}}(L)={\mathrm{8.0000.10}}^{-4}{\mathrm{N.mm}}^{-1}\)
\({\sigma }_{\mathrm{zz}}(L)={\mathrm{8.0000.10}}^{-4}{\mathrm{N.mm}}^{-1}\)
15.3. Thermomechanical loading#
15.3.1. 2D axisymmetric model#
\(T(r)–{T}_{\mathrm{réf}}(r)=\frac{{T}_{s}+{T}_{i}}{2}+\frac{({T}_{s}–{T}_{i})}{h}(r-R)\) \(\mathrm{éq}\mathrm{3.1.}-1\)
Displacement is postulated in the form:
\({u}_{r}=u(r)\); \({u}_{z}={u}_{\theta }=0\)
with the appropriate boundary conditions. Thus, elastic stresses are expressed:
\({\sigma }_{\mathrm{rr}}=\frac{E}{(1+\nu )(1-2\nu )}[(1-\nu )u\text{'}+\nu \frac{u}{r}]-\frac{\alpha E}{1-2\nu }(T-{T}_{\mathrm{réf}})\)
\({\sigma }_{\theta \theta }=\frac{E}{(1+\nu )(1-2\nu )}[(1-\nu )\frac{u}{r}+\nu u\text{'}]-\frac{\alpha E}{1-2\nu }(T-{T}_{\mathrm{réf}})\) \(\mathrm{éq}1.1-3\)
\({\sigma }_{\mathrm{zz}}=\frac{\nu E}{(1+\nu )(1-2\nu )}[\frac{u}{r}+u\text{'}]-\frac{\alpha E}{1-2\nu }(T-{T}_{\mathrm{réf}})\)
The radial equilibrium equation \({(r,{\sigma }_{\mathrm{rr}})}_{,r}-{\sigma }_{\theta \theta }=0\) gives:
\((\frac{(\mathrm{ru})\text{'}}{r})\text{'}=\frac{\alpha (1+\nu \text{'})}{(1-\nu )}(T-{T}_{\mathrm{réf}})\text{'}\) \(\mathrm{éq}3.1-2\)
Hence the general solution:
\(u(r)=\frac{\alpha (1+\nu )}{(1-\nu )}\frac{({T}_{s}-{T}_{i})}{h}\frac{{r}^{2}}{3}+\mathrm{Ar}+\frac{B}{r}\) \(\mathrm{éq}3.1-3\)
The constraints are then:
\({\sigma }_{\mathrm{rr}}(r)=\frac{\alpha E({T}_{s}-{T}_{i})}{h}(\frac{R}{1-2\nu }-\frac{r}{3(1-\nu )})-\frac{\alpha E}{1-2\nu }({T}_{s}-{T}_{i})+\frac{E}{(1+\nu )(1-2\nu )}(A-(1-2\nu )\frac{B}{{r}^{2}})\)
\({\sigma }_{\theta \theta }(r)=\frac{\alpha E({T}_{s}-{T}_{i})}{h}(\frac{R}{1-2\nu }-\frac{\mathrm{2r}}{3(1-\nu )})-\frac{\alpha E}{1-2\nu }({T}_{s}-{T}_{i})+\frac{E}{(1+\nu )(1-2\nu )}(A-(1-2\nu )\frac{B}{{r}^{2}})\)
\({\sigma }_{\mathrm{zz}}(r)=\frac{\alpha E({T}_{s}-{T}_{i})}{h}(\frac{R}{1-2\nu }-\frac{r}{3(1-\nu )})-\frac{\alpha E}{1-2\nu }({T}_{s}-{T}_{i})+\frac{2\nu E}{(1+\nu )(1-2\nu )}A\) \(\mathrm{éq}3.1-4\)
The limit conditions in effort are: in \(r=R\pm \frac{h}{2},{\sigma }_{\mathrm{rr}}=0\). Note: \(x=\frac{h}{\mathrm{2R}}\). Thanks to \([\mathrm{éq}3.1-4]\), we get:
\(B=\frac{\alpha ({T}_{s}-{T}_{i})}{\mathrm{6h}(1-\nu )}(1+\nu ){R}^{3}{(1-{x}^{2})}^{2}\)
then:
\(A=\alpha (1+\nu )[\frac{-({T}_{s}-{T}_{i})R}{\mathrm{6h}(1-\nu )}(3-(1-2\nu ){x}^{2})+\frac{({T}_{s}+{T}_{i})}{2}]\)
Digital application:
\(F={8.10}^{-4}{\mathrm{N.mm}}^{-1}\)
\(w(L)=-{\mathrm{2.4000.10}}^{-8}\mathrm{mm}\)
\({N}_{\mathrm{zz}}(L)={\mathrm{8.0000.10}}^{-4}{\mathrm{N.mm}}^{-1}\)
\({\sigma }_{\mathrm{zz}}(L)={\mathrm{8.0000.10}}^{-4}{\mathrm{N.mm}}^{-1}\)
From where: \(A=-{\mathrm{0.18569881.10}}^{-3}{\mathrm{mm}}^{2}\)
\(B=0.02473096{\mathrm{mm}}^{2}\)
Note:
\(\frac{\alpha (1+\nu )}{1-\nu }\frac{{T}_{s}–{T}_{i}}{\mathrm{3h}}=0.61904762E-5\)
in inner skin: \(\{\begin{array}{}{u}_{r}=1.056145{E}^{-6}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}=1.4321427\mathrm{Mpa}\end{array}\)
in outer skin: \(\{\begin{array}{}{u}_{r}=1.110317{E}^{-6}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}=-1.4250001\mathrm{Mpa}\end{array}\)
\(\begin{array}{}{\sigma }_{\mathrm{zz}}=1.449319\mathrm{Mpa}\\ \mathrm{ou}\\ {\sigma }_{\mathrm{zz}}=1.428671\mathrm{Mpa}\text{( sans correction métrique )}\end{array}\)
In case we take \({T}_{s}={T}_{i}=0.1°C\):
\(A=\mathrm{0,00130000}{.10}^{-3}\)
\(B=\mathrm{0,0 }{\mathrm{mm}}^{2}\)
So:
in inner skin: \(\begin{array}{}{u}_{r}=25.350000{E}^{-6}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}=-0.200000\mathrm{Mpa}\end{array}\)
in outer skin: \(\begin{array}{}{u}_{r}=26.650000{E}^{-6}\mathrm{mm}\\ {\sigma }_{\mathrm{zz}}=-0.200000\mathrm{Mpa}\end{array}\)
15.3.2. Axisymmetric shell model#
For the temperature field in the thickness given by \([\mathrm{éq}3.1-1]\), the following expression for the law of behavior is obtained:
\(\begin{array}{}{N}_{\theta \theta }=\frac{\mathrm{Eh}}{1-{\nu }^{2}}({E}_{\theta \theta }+\nu {E}_{\mathrm{zz}})-\frac{\alpha Eh}{1-\nu }[\frac{{T}_{s}+{T}_{i}}{2}+\frac{{T}_{s}-{T}_{i}}{12}\frac{h}{R}]\\ {N}_{\mathrm{zz}}=\frac{\mathrm{Eh}}{1-{\nu }^{2}}(\nu {E}_{\theta \theta }+{E}_{\mathrm{zz}})-\frac{\alpha Eh}{1-\nu }[\frac{{T}_{s}+{T}_{i}}{2}+\frac{{T}_{s}-{T}_{i}}{12}\frac{h}{R}]\end{array}\) \(\mathrm{éq}3.2-1\)
and:
\(\begin{array}{}{N}_{\theta \theta }=\frac{\mathrm{Eh}}{1-{\nu }^{2}}({E}_{\theta \theta }+\nu {E}_{\mathrm{zz}})-\frac{\alpha Eh}{1-\nu }[\frac{{T}_{s}+{T}_{i}}{2}+\frac{{T}_{s}-{T}_{i}}{12}\frac{h}{R}]\\ {N}_{\mathrm{zz}}=\frac{\mathrm{Eh}}{1-{\nu }^{2}}(\nu {E}_{\theta \theta }+{E}_{\mathrm{zz}})-\frac{\alpha Eh}{1-\nu }[\frac{{T}_{s}+{T}_{i}}{2}+\frac{{T}_{s}-{T}_{i}}{12}\frac{h}{R}]\end{array}\) \(\mathrm{éq}3.2-2\)
According to these expressions, the thermal terms in
are to be overlooked if we do not consider the metric correction in thickness, that is to say in the case of the usual models.
In our situation:
\({E}_{\theta \theta }=\frac{w}{R}\)
\({E}_{\mathrm{zz}}=0\)
\({K}_{\theta \theta }={K}_{\mathrm{zz}}=0\)
The normal balance in the shell is written as:
\({N}_{\theta \theta }=0\)
Hence the arrow:
\(w=\alpha (1+\nu )[\frac{{T}_{s}+{T}_{i}}{2}+\frac{{T}_{s}+{T}_{i}}{12}\frac{h}{R}]R\)
and:
\({N}_{\mathrm{zz}}=\alpha \mathrm{Eh}[\frac{{T}_{s}+{T}_{i}}{2}+\frac{{T}_{s}+{T}_{i}}{12}\frac{h}{R}]\)
\({M}_{\mathrm{zz}}=\frac{-\alpha {\mathrm{Eh}}^{2}}{12(1-\nu )}[({T}_{s}-{T}_{i})+\frac{{T}_{s}+{T}_{i}}{2}\frac{h}{R}]\)
Since the second member of dilation does not take into account the metric correction, the terms in
above are overlooked.
Digital app
\(R=\mathrm{20 }\mathrm{mm}\)
\(h=\mathrm{1 }\mathrm{mm}\)
\(\alpha ={10}^{-5}°{C}^{-1}\)
\({T}_{s}={T}_{i}=0.5°C\)
\(\nu =0.3\)
\(E={2.10}^{5}N/{\mathrm{mm}}^{2}\)
From where:
\({M}_{\mathrm{zz}}=-0.2380952N\)
in inner skin: \(\begin{array}{}{\sigma }_{\mathrm{zz}}=1.449319\mathrm{Mpa}\\ \mathrm{ou}\\ {\sigma }_{\mathrm{zz}}=1.428671\mathrm{Mpa}\text{( sans correction métrique )}\end{array}\)
In case we take \({T}_{s}={T}_{i}=\mathrm{0,1}°C\):
\(w={\mathrm{26.00000.10}}^{-6}\mathrm{mm}\)
\({N}_{\mathrm{zz}}=–0.2{\mathrm{N.mm}}^{-1}\)
\({M}_{\mathrm{zz}}=–0.001190476N\)
in inner skin: \(\begin{array}{}{\sigma }_{\mathrm{zz}}=-0.2122466\mathrm{Mpa}\\ \mathrm{ou}\\ {\sigma }_{\mathrm{zz}}=-0.200000\mathrm{Mpa}\text{( sans correction métrique )}\end{array}\)
**Thickness constraints with metric correction are given by:*
\({\sigma }_{\mathrm{zz}}({x}_{3})=\frac{{N}_{\mathrm{zz}}–\frac{{M}_{\mathrm{zz}}}{R}}{h(1-\frac{{h}^{2}}{{\mathrm{12R}}^{2}})}+({M}_{\mathrm{zz}}-{N}_{\mathrm{zz}}\frac{{h}^{2}}{\mathrm{12R}})\frac{{\mathrm{12x}}_{3}}{{h}^{3}(1-\frac{{h}^{2}}{{\mathrm{12R}}^{2}})}\)