1. Reference problem#

_images/10000200000004530000015FCDEB098627D618FE.png

1.1. Geometry#

Figure1: Reference problem (for a \(90°\) rotation)

We consider a cubic element of matter with a side of \(1000\mathrm{mm}\) subjected alternately to a tensile force and then to an overall rotation of \(45°\). It undergoes a total of 4 traction/rotation cycles.

1.2. Material data#

Here we consider 6 elasto-plastic behavior laws with kinematic or combined kinematic/isotropic work-hardening of the von Mises type:

VMIS_CINE_LINE, VMIS_ECMI_LINE, VMIS_ECMI_TRAC,

VMIS_CIN1_CHAB and VMIS_CIN2_CHAB VMIS_CIN2_MEMO.

The table below lists the parameters used; in order to reinforce the comparison, the parameters used result in laws of behavior that are identical in all 5 cases (linear work hardening).

Keyword

Setting

Value

ELAS

E

\(200000\mathrm{MPa}\)

NUDE

\(\mathrm{0,3}\)

TRACTION

SIGM

\((0.001\mathrm{,200});(0.002\mathrm{,202})\)

ECRO_LINE

D_ SIGM_EPSI

\(2000\mathrm{MPa}\)

SY

\(200\mathrm{MPa}\)

PRAGER

C

\(\frac{2}{3}\frac{E\mathrm{\ast }\text{D\_SIGM\_EPSI}}{E\mathrm{-}\text{D\_SIGM\_EPSI}}\mathrm{\simeq }\mathrm{1346,8}\mathit{MPa}\)

CIN1_CHAB

C_I

\(\frac{E\mathrm{\ast }\text{D\_SIGM\_EPSI}}{E\mathrm{-}\text{D\_SIGM\_EPSI}}\mathrm{\simeq }\mathrm{2020,2}\mathit{MPa}\)

R_0

\(200\mathit{MPa}\)

R_I

\(200\mathit{MPa}\)

G_0

\(0\)

CIN2_CHAB

C1_I

\(\frac{1}{2}\frac{E\ast \text{D\_SIGM\_EPSI}}{E-\text{D\_SIGM\_EPSI}}\simeq \mathrm{1010,1}\mathrm{MPa}\)

C2_I

\(\frac{1}{2}\frac{E\ast \text{D\_SIGM\_EPSI}}{E-\text{D\_SIGM\_EPSI}}\simeq \mathrm{1010,1}\mathrm{MPa}\)

R_0

\(200\mathrm{MPa}\)

R_I

\(200\mathrm{MPa}\)

G1_0

\(0\)

G2_0

\(0\)

MEMO_ECRO

MU

0

Q_M

0

Q_0

0

ETA

\(0\)

1.3. Boundary conditions and loads#

Two types of phases must be distinguished: traction phases and rotation phases. During the traction phases, the normal movements of the front and rear faces are blocked.

Traction phases:

First traction phase

Entity

Load Type

Value

Underside

FACE_IMPO

\(\mathrm{DNOR}=0\)

Top side

FACE_IMPO

\(\mathrm{DNOR}=\mathrm{500mm}\)

Rotation axis

DDL_IMPO

\(\mathrm{DX}=0\)

Front panel

FACE_IMPO

\(\mathrm{DNOR}=0\)

Back side

FACE_IMPO

\(\mathrm{DNOR}=0\)

Next pull-ups:

Entity

Load Type

Value

Underside

LIAISON_OBLIQUE

\(\mathrm{DZ}=0\)

Top side

LIAISON_OBLIQUE

\(\mathit{DZ}=300\mathit{mm}\)

Side \(X\mathrm{=}0\); \(Z\mathrm{=}\mathrm{1mm}\)

LIAISON_OBLIQUE

\(\mathrm{DX}=0\)

Rotation axis

DDL_IMPO

\(\mathrm{DX}=\mathrm{0,}\mathrm{DZ}=0\)

Front panel

DDL_IMPO

\(\mathrm{DY}=0\)

Back side

DDL_IMPO

\(\mathrm{DY}=0\)

Each traction phase is composed of 5 identical increments.

Rotation phase:

Boundary conditions

Entity

Load Type

Value

Rotation axis

DDL_IMPO

\(\mathrm{DX}=\mathrm{0,}\mathrm{DZ}=0\)

Front panel

DDL_IMPO

\(\mathrm{DY}=0\)

Back side

DDL_IMPO

\(\mathrm{DY}=0\)

The rotation load is imposed via a macro named CHAR_ROTA; an overall rotation of \(45°\) per phase is imposed, divided into 5 increments of \(9°\).

At the end of the loading, a deformation of 2,145 is obtained.