Reference problem ===================== .. image:: images/10000200000004530000015FCDEB098627D618FE.png :width: 6.4638in :height: 2.0484in .. _RefImage_10000200000004530000015FCDEB098627D618FE.png: .. _DébuBut: Geometry --------- Figure1: Reference problem (for a :math:`90°` rotation) We consider a cubic element of matter with a side of :math:`1000\mathrm{mm}` subjected alternately to a tensile force and then to an overall rotation of :math:`45°`. It undergoes a total of 4 traction/rotation cycles. Material data ---------------- Here we consider 6 elasto-plastic behavior laws with kinematic or combined kinematic/isotropic work-hardening of the von Mises type: VMIS_CINE_LINE, VMIS_ECMI_LINE, VMIS_ECMI_TRAC, VMIS_CIN1_CHAB and VMIS_CIN2_CHAB VMIS_CIN2_MEMO. The table below lists the parameters used; in order to reinforce the comparison, the parameters used result in laws of behavior that are identical in all 5 cases (linear work hardening). +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ |**Keyword**|**Setting** |**Value** | +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ |ELAS |E |:math:`200000\mathrm{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |NUDE |:math:`\mathrm{0,3}` | +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ |TRACTION |SIGM |:math:`(0.001\mathrm{,200});(0.002\mathrm{,202})` | +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ |ECRO_LINE |D_ SIGM_EPSI|:math:`2000\mathrm{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |SY |:math:`200\mathrm{MPa}` | +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ |PRAGER |C |:math:`\frac{2}{3}\frac{E\mathrm{\ast }\text{D\_SIGM\_EPSI}}{E\mathrm{-}\text{D\_SIGM\_EPSI}}\mathrm{\simeq }\mathrm{1346,8}\mathit{MPa}`| +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ |CIN1_CHAB |C_I |:math:`\frac{E\mathrm{\ast }\text{D\_SIGM\_EPSI}}{E\mathrm{-}\text{D\_SIGM\_EPSI}}\mathrm{\simeq }\mathrm{2020,2}\mathit{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |R_0 |:math:`200\mathit{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |R_I |:math:`200\mathit{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |G_0 |:math:`0` | +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ |CIN2_CHAB |C1_I |:math:`\frac{1}{2}\frac{E\ast \text{D\_SIGM\_EPSI}}{E-\text{D\_SIGM\_EPSI}}\simeq \mathrm{1010,1}\mathrm{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |C2_I |:math:`\frac{1}{2}\frac{E\ast \text{D\_SIGM\_EPSI}}{E-\text{D\_SIGM\_EPSI}}\simeq \mathrm{1010,1}\mathrm{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |R_0 |:math:`200\mathrm{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |R_I |:math:`200\mathrm{MPa}` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |G1_0 |:math:`0` | + +------------+-----------------------------------------------------------------------------------------------------------------------------------------+ | |G2_0 |:math:`0` | +-----------+------------+-----------------------------------------------------------------------------------------------------------------------------------------+ +---------+---+---------+ |MEMO_ECRO|MU |0 | + +---+---------+ | |Q_M|0 | + +---+---------+ | |Q_0|0 | + +---+---------+ | |ETA|:math:`0`| +---------+---+---------+ Boundary conditions and loads ------------------------------------- Two types of phases must be distinguished: traction phases and rotation phases. During the traction phases, the normal movements of the front and rear faces are blocked. Traction phases: First traction phase .. csv-table:: "**Entity**", "**Load Type**", "**Value**" "Underside", "FACE_IMPO "," :math:`\mathrm{DNOR}=0`" "Top side", "FACE_IMPO "," :math:`\mathrm{DNOR}=\mathrm{500mm}`" "Rotation axis", "DDL_IMPO "," :math:`\mathrm{DX}=0`" "Front panel", "FACE_IMPO "," :math:`\mathrm{DNOR}=0`" "Back side", "FACE_IMPO "," :math:`\mathrm{DNOR}=0`" Next pull-ups: .. csv-table:: "**Entity**", "**Load Type**", "**Value**" "Underside", "LIAISON_OBLIQUE "," :math:`\mathrm{DZ}=0`" "Top side", "LIAISON_OBLIQUE "," :math:`\mathit{DZ}=300\mathit{mm}`" "Side :math:`X\mathrm{=}0`; :math:`Z\mathrm{=}\mathrm{1mm}` "," LIAISON_OBLIQUE "," :math:`\mathrm{DX}=0`" "Rotation axis", "DDL_IMPO "," :math:`\mathrm{DX}=\mathrm{0,}\mathrm{DZ}=0`" "Front panel", "DDL_IMPO "," :math:`\mathrm{DY}=0`" "Back side", "DDL_IMPO "," :math:`\mathrm{DY}=0`" Each traction phase is composed of 5 identical increments. Rotation phase: Boundary conditions .. csv-table:: "**Entity**", "**Load Type**", "**Value**" "Rotation axis", "DDL_IMPO "," :math:`\mathrm{DX}=\mathrm{0,}\mathrm{DZ}=0`" "Front panel", "DDL_IMPO "," :math:`\mathrm{DY}=0`" "Back side", "DDL_IMPO "," :math:`\mathrm{DY}=0`" The rotation load is imposed via a macro named CHAR_ROTA; an overall rotation of :math:`45°` per phase is imposed, divided into 5 increments of :math:`9°`. At the end of the loading, a deformation of 2,145 is obtained.