1. Reference problem#

1.1. Geometry#

_images/Object_1.svg

1.2. Material properties#

Isotropic elasticity \(E=145000\mathrm{MPa}\) \(\nu =0.3\)

Elasto-plasticity with memory effect (modeling A): model VISC_CIN2_MEMO

Isotropic work hardening

R_0

\(35\mathrm{MPa}\)

B

12

Memory

MU

19

Q_0

\(\mathrm{140MPa}\)

ETA

0.5

Q_M

\(\mathrm{460MPa}\)

Kinematic work hardening (modeling A)

C1

0

G1_0

0

C2

0

G2_0

0

Viscoplasticity with memory effect (B and C models): model VISC_CIN2_MEMO

Parameters the same as the previous values except:

LEMAITRE

UN_SUR_K

\(1/70{(\mathrm{MPa}{S}^{1/N})}^{\text{-1}}\) =0.0142857

N

24

Kinematic work hardening (B modeling)

C1

1950 MPa

G1_0

50

C2

65000 MPa

G2_0

1300

Viscoplasticity model VISCOCHAB (B and C models)

\(k\)

\(35\mathit{MPa}\)

B

12

12

ETA

0.5

C2

\(65000\mathit{MPa}\)

A_K

0

M_R

1

C1

\(1950\mathit{MPa}\)

M_2

1

A_R

1

G_R

0

0

M_1

1

D2

1

K_0

\(70\mathrm{MPa}{S}^{1/N}\)

MU

19

19

D1

1

G_X2

0

N

24

Q_M

460

460

G_X1

0

G2_0

\(1300\mathit{MPa}\)

ALP

0 MPa

Q_0

Q_0

40 MPa

40

G1_0

\(50\mathit{MPa}\)

A_I

1

QR_0

200 MPa

1.3. Boundary conditions and loads#

\(\mathit{N6}\)

\(\mathit{dy}\mathrm{=}\mathit{dz}\mathrm{=}0\)

\(\mathit{N2}\)

\(\mathit{dy}\mathrm{=}0\)

\(\mathit{FACE1YZ}\)

\(\mathit{dx}\mathrm{=}0\)

Traction (modeling A):

\(\mathit{FACEYZ}\)

\(\mathit{Fx}\mathrm{=}\mathrm{-}0.25\mathrm{\times }\mathit{coef}\)

\(\mathit{Coef}\mathrm{=}120\) for \(t\mathrm{=}\mathrm{8s}\).

Pre-work hardening (B modeling)

\(\mathit{FACEYZ}\)

\(\mathit{Sxx}\mathrm{=}250\mathit{MPa}\mathrm{\times }\mathit{coef2}\)

\(\mathit{Sxx}\mathrm{=}250\mathit{Mpa}\mathrm{\times }\mathit{coef2}\)

\(\mathit{coef}2\mathrm{=}1\) for \(t\mathrm{=}\mathrm{10s}\)

then unload (\(\mathit{coef2}\mathrm{=}0\)) for \(t\mathrm{=}\mathrm{11s}\).

From \(\mathrm{11s}\)

20 cycles in imposed deformation (+/- 0.5%)