1. Reference problem#

1.1. Geometry#

_images/100000000000052C00000246AD71FCBE068FC2A0.png

The dimensions of the beam are:

  • Length \(L=10m\)

  • Width \(l=1m\)

  • Thickness \(e=\mathrm{0,1}m\)

1.2. Material properties#

The material has two possible behaviors. In flexure, linear isotropic elasticity:

  • Young’s module: \(E=\mathrm{1,0}\times {10}^{7}\mathit{Pa}\)

  • Poisson’s ratio: \(\nu =0.3\)

In traction, von Mises plasticity at linear isotropic work hardening:

  • Young’s module: \(E=210\mathit{GPa}\)

  • Poisson’s ratio: \(\nu \mathrm{=}0.3\)

  • Elastic limit: \({\sigma }_{y}=3\mathit{MPa}\)

  • Work hardening slope: \(H=2\mathit{GPa}\)

1.3. Boundary conditions and loads#

Boundary conditions: Embedment on the left side \(\mathit{DX}=\mathit{DY}=\mathit{DZ}=0\) in flexure and traction

Flexural loading: surface loading FORCE_FACE such as \(\mathit{FZ}=400N{m}^{-2}\) on the right side

Traction loading: surface loading FORCE_FACE such as \(\mathit{FX}=\mathrm{1,0}\times {10}^{7}{\mathit{Nm}}^{-2}\) on the right side