2. Benchmark solution#

2.1. Calculation method used for the reference solution#

Comparison with the numerical results of a volume modeling with Samcef V7.0 with 50 time steps (module THERNL for calculating the transient temperature field and repeated with module MECANL for non-linear mechanical calculation).

An implicit schema is used to integrate the heat equation.

The non-linear mechanical calculation was performed with SAMCEF using axisymmetric modeling with 5 time steps (geometric nonlinear modeling) and volume modeling (a quarter cylinder) with 5 time steps (geometric nonlinear modeling).

2.2. Benchmark results#

Evolution of the temperature field according to the thickness on the lower side of the cylinder

Axisymmetric calculation with 50 time steps

Time = 0.5 sec

Time = 25 sec

1.25355E+01

8.64267E+01

5.71233E+00

7.65695E+01

2.44526E+00

6.77355E+01

1.12189E+00

5.98610E+01

4.83644E-01

5.28476E+01

2.22443E-01

4.66462E+01

9.62036E-02

4.11801E+01

4.43444E-02

3.64106E+01

1.92310E-02

3.22765E+01

8.87973E-03

2.87468E+01

3.85960E-03

2.57723E+01

1.78524E-03

2.33283E+01

7.78650E-04

2.13761E+01

3.63114E-04

1.98963E+01

1.64448E-04

1.88596E+01

8.80577E-05

1.82514E+01

6.54904E-05

1.80507E+01

Volume calculation with 50 time steps

Time = 0.5 sec

Time = 25 sec

1.26658E+01

8.64175E+01

5.64556E+00

7.65753E+01

2.50690E+00

6.77332E+01

1.10448E+00

5.98571E+01

5.06396E-01

5.28510E+01

2.23330E-01

4.66453E+01

9.98984E-02

4.11819E+01

4.41255E-02

3.64095E+01

2.02976E-02

3.22781E+01

8.97177E-03

2.87460E+01

4.05352E-03

2.57736E+01

1.79338E-03

2.33275E+01

8.25938E-04

2.13766E+01

3.68531E-04

1.98979E+01

1.74367E-04

1.88647E+01

8.91805E-05

1.82450E+01

6.98548E-05

1.80607E+01

Evolution of the longitudinal stress \({\sigma }_{T}\)

_images/10000FC2000069BB00004F7AA120A248C7C5FF1D.svg

Cases where the pressure is not following

Geometric nonlinear volume calculation with 5 time steps

\(t(s)\)

\(\sigma\)

Point \(A\)

Point \(B\)

15.0

\({\sigma }_{T}\)

1.21692E8

1.67285E8

20.0

\({\sigma }_{T}\)

1.39804E8

1.65266E8

25.0

\({\sigma }_{T}\)

1.28967E8

1.57980E8

Geometric nonlinear axisymmetric calculation with 5 time steps

\(t(s)\)

\(\sigma\)

Point \(A\)

Point \(B\)

15.0

\({\sigma }_{T}\)

1.20472E8

1.66917E8

20.0

\({\sigma }_{T}\)

1.39164E8

1.70412E8

25.0

\({\sigma }_{T}\)

1.28421E8

1.63168E8

Cases where the pressure is follow

Geometric nonlinear volume calculation with 5 time steps

\(t(s)\)

\(\sigma\)

Point \(A\)

Point \(B\)

15.0

\({\sigma }_{T}\)

1.21692E8

1.67285E8

20.0

\({\sigma }_{T}\)

1.39894E8

1.65313E8

25.0

\({\sigma }_{T}\)

1.29032E8

1.58007E8

Geometric nonlinear axisymmetric calculation with 5 time steps

\(t(s)\)

\(\sigma\)

Point \(A\)

Point \(B\)

15.0

\({\sigma }_{T}\)

1.20472E8

1.65934E8

20.0

\({\sigma }_{T}\)

1.39252E8

1.64075E8

25.0

\({\sigma }_{T}\)

1.28485E8

1.56886E8

2.3. Uncertainty about the solution#

Uncertainty less than \(\text{1 \%}\) for thermal calculation, uncertainty less than \(\text{0.5 \%}\) for mechanical calculation.