2. Reference solution#

2.1. Calculation method#

The analytical reference solution is given by:

(2.1)#\[\begin{split} \ begin {array} {ccc}\ mathit {Ux} &\ text {=} & 0.2\ mathrm {\ times} {Z} ^ {2}\ mathrm {\ times} X\ mathrm {\ times} X\ mathrm {\ times}} Y\\\ times} Y\\\ mathit {Uy} &\ text {=} & 0.2\ mathrm {\ times} {Z} ^ {2}\ mathrm {\ times} {2}\ mathrm {\ times} X\ mathrm {\ times} Y\\\ mathit {Uz} &\ text {=} &\ mathrm {-} 0.2\ mathrm {\ times} (1. + {X} ^ {2} + {Y} ^ {2})\ mathrm {\ times} (1+0.01\ mathrm {\ times} Z)\ mathrm {-} 0.01\ mathrm {\ ast}})\ mathrm {\ ast}))\ mathrm {\ times} (1+0.01\ mathrm {-} Z)\ mathrm {-} 0.01\ mathrm {-} 0.01\ mathrm {\ ast}} Z\ mathrm {-} 0.3\ end {array}\end{split}\]

The Dirichlet and Neumann conditions and the source term are obtained by the method of manufactured solutions [bib1].

We start by determining the gradient of transformation \(\underline{\underline{F}}\):

(2.2)#\[ \ underline {\ underline {F}} =\ underline {\nabla}\ underline {U} +\ underline {\ underline {\ underline {\ mathrm {Id}}}}\]

Knowing the normal \(\underline{N}={[\mathrm{0,}\mathrm{0,}-1]}^{T}\) to the surface \(\text{ESCLAVE}\) in the undeformed configuration, we obtain its expression in the deformed configuration by the Nanson formula:

\[\]

: label: eq-4

underline {n} =frac {{underline {underline {underline {F}}}} ^ {-T}underline {N}} {parallel {underline {F}}}}} ^ {-T}underline {N}parallel}

Knowing the Hooke tensor \(\underline{\underline{\underline{\underline{A}}}}\) and the Green-Lagrange tensor \(\underline{\underline{E}}\) and the Green-Lagrange tensor, we calculate the second Piola-Kirchhoff tensor \(\underline{\underline{S}}\):

\[\]

: label: eq-5

underline {underline {E}} =frac {1} {2} ({underline {underline {F}}}}} ^ {T}cdotunderline {underline {F}}} -underline {underline {F}}} -underline {underline {underline {F}}} -underline {underline {F}}} -underline {underline {F}}} -underline {underline {F}}} -underline {underline {F}}})

(2.3)#\[ \ underline {\ underline {S}} =\ underline {\ underline {\ underline {\ underline {A}}}}}:\ underline {\ underline {E}}}:\ underline {\ underline {E}}}\]

It should be noted that the second Piola-Kirchhoff tensor \(\underline{\underline{S}}\) makes it possible to obtain forces in an undeformed configuration per unit of undeformed area:

(2.4)#\[ \ frac {d\ underline {{f} _ {0}}}} {\ mathrm {dA}} =\ underline {\ underline {S}}}\ cdot\ underline {N}\]

As we are looking to determine forces in a deformed configuration, we will determine the first Piola-Kirchhoff tensor \(\underline{\underline{\Pi }}\)

(2.5)#\[ \ underline {\ underline {\ Pi}} =\ underline {\ underline {F}}\ cdot\ underline {\ underline {S}}\]

We can thus determine volume forces \({\underline{f}}_{\mathrm{vol}}\):

(2.6)#\[ {\ underline {f}} _ {\ mathrm {vol}}} =\ text {-div}\ underline {\ underline {\ pi}}\]

Knowing the normal in initial configuration on the various faces and the first Piola-Kirchhoff \(\underline{\underline{\Pi }}\) tensor, we can calculate the surface forces in deformed configuration:

(2.7)#\[ {\ underline {f}} _ {\ text {surf}} =\ underline {\ underline {\ Pi}}\ cdot\ underline {N}}\]

On the surface \(\text{BAS}\) that is in contact, a particular treatment is needed. In fact, normal forces are taken into account by contact:

(2.8)#\[\begin{split} \ begin {array} {ccccc} {\ underline {f}}} _ {\ text {surf}} _ {\ text {surf}}} ^ {\ text {BAS}} & {\ underline {f}} _ {{\ text {surf}}} _ {n}} _ {n}} _ {n}} _ {n}} _ {n}} ^ {\ text {surf}} _ {n}} ^ {\ text {surf}}} _ {n}} ^ {\ text {surf}}} ^ {\ text {BAS}}\\ &\ text {=}} & {\ underline {f}}} _ {\ text {contact}} & +& {\ underline {f}} _ {{\ text {surf}}} _ {t}} _ {t}} _ {t}} _ {t}}} _ {\ text {f}} _ {\ text {f}} _ {\ text {f}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {{\ text {surf}}} _ {t}}} ^ {\ text {BAS}}\ end {array} BAS BAS\end{split}\]

Where \(p\) refers to contact pressure. It can be determined by the expression:

(2.9)#\[ p= (\ underline {\ underline {\ Pi}}}\ cdot\ underline {N})\ cdot\ underline {n}\]

Therefore, only tangential forces should be applied. They are calculated by the expression:

(2.10)#\[\begin{split} \ begin {array} {ccc} {\ underline {f}}} _ {{\ text {f}}} _ {t}} ^ {\ text {BAS}} &\ text {=} & {\ underline {f}}} _ {\ text {f}}} _ {\ text {f}}} _ {\ underline {f}} _ {\ text {surf}}} _ {n}}} _ {n}} ^ {n}} ^ {\ text {BAS}}\\ &\ text {=}} & {\ underline {f}}} _ {\ text {surf}} ^ {\ text {BAS}} - ({\ underline {f}}} _ {{\ text {surf}}} _ {\ text {surf}}} _ {n}} _ {n}} _ {n}} _ {n}} _ {n}} _ {\ text {surf}} _ {\ text {surf}}} _ {\ text {surf}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}} _ {\ text {surf}}} _ {\ text {surf}}} _ {\ text {surf}}} _ {BAS BAS\end{split}\]

Regarding contact efforts, it is absolutely essential to build the manufactured solution in such a way that they verify the contact equations [bib2], namely:

(2.11)#\[\begin{split} \ begin {array} {ccc}\ text {gap} (\ underline {U}) &\ text {}\ ge\ text {} & 0\ p&\ text {}\ le\ text {}\ le\ text {} & 0\\ p\ cdot\ cdot\ cdot\ cdot\ cdot\ text {gap} (\ underline {U}) (\ underline {U}) &\ text {=} & 0\ end {array} & 0\ end {array}\end{split}\]
_images/100000000000029A000002888BE59863C946E150.png

Figure 2.1-1: Validity of the manufactured solution: pressure p

_images/10000000000002640000028D95A7401FA089DB08.png

Figure 2.1-2: Validity of the manufactured solution: Gap game (U)

2.2. Reference quantities and results#

The value of the difference between analytical solutions and calculated on the mesh: \(\sum ^{\text{noeuds}n}\mid {\underline{U}}_{\text{n}}^{\text{calc}}-{\underline{U}}_{\text{n}}^{\text{ref}}\mid\) and \(\sum ^{\text{noeuds}n}\mid {p}_{\text{n}}^{\text{calc}}-{p}_{\text{n}}^{\text{ref}}\mid\).

In the case of models that perform a convergence analysis with the fineness of the mesh, the speed of convergence with the fineness of the mesh from the calculated solution to the analytical solution in standard \({L}_{2}\):

  • the largest real \({\alpha }_{U}>0\) such as \({\parallel {\underline{U}}^{\text{calc}}-{\underline{U}}^{\text{ref}}\parallel }_{\mathrm{0,}\Omega }<{C}_{U}\times {h}^{{\alpha }_{U}}\) where \({C}_{U}\) is independent of \(h\) for displacement;

  • the largest real \({\alpha }_{p}>0\) such as \({\parallel {p}^{\text{calc}}-{p}^{\text{ref}}\parallel }_{\mathrm{0,}{\Gamma }_{C}}<{C}_{p}\times {h}^{{\alpha }_{p}}\) where \({C}_{p}\) is independent of \(h\) for contact pressure.

2.3. Uncertainty about the solution#

None

2.4. Bibliographical references#

  1. Document U2.08.08, Using the Manufactured Solutions Method for Software Validation, Code_Aster U2 Documentation

  2. r5.03.50 Discreet formulation of contact friction r5.03.50 Discreet formulation of contact friction r5.03.50 Discreet formulation of contact friction