2. Benchmark solution#
2.1. Development of the analytical solution for CJS1#
We always have:
where
represents the confinement pressure.
Still to be determined
.
Elastic phase:
By simply writing the elastic law, we have:
\({\sigma }_{\mathrm{xx}}^{0}={\sigma }_{\mathrm{xx}}^{0}+\lambda {\varepsilon }_{\mathrm{zz}}+(\lambda +2\mu ){\varepsilon }_{\mathrm{xx}}+\lambda {\varepsilon }_{\mathrm{xx}}\)
\({\sigma }_{\mathrm{zz}}={\sigma }_{\mathrm{zz}}^{0}+(\lambda +2\mu ){\varepsilon }_{\mathrm{zz}}+2\lambda {\varepsilon }_{\mathrm{xx}}\)
where here \(\lambda\) and \(\mu\) are the Lamé coefficients.
By eliminating \({\varepsilon }_{\mathrm{xx}}\) between these two equations, we find:
\({\sigma }_{\mathrm{zz}}={\sigma }_{\mathrm{zz}}^{0}+\frac{\mu (3\lambda +2\mu )}{(\lambda +\mu )}{\varepsilon }_{\mathrm{zz}}\)
Plastic phase:
We have:
where
represents the confinement pressure.
We deduce for the components of the diverter
:
\({s}_{\mathrm{zz}}=2\left[\frac{1}{3}{I}_{1}-{\sigma }_{\mathrm{xx}}^{0}\right]\) and \({s}_{\mathrm{xx}}={\sigma }_{\mathrm{xx}}^{0}-\frac{1}{3}{I}_{1}\)
either: \({s}_{\mathrm{II}}=\sqrt{6}\left[{\sigma }_{\mathrm{xx}}^{0}-\frac{1}{3}{I}_{1}\right]\) and \(\mathrm{det}(\underline{\underline{s}})=2{\left[\frac{1}{3}{I}_{1}-{\sigma }_{\mathrm{xx}}^{0}\right]}^{3}\)
Therefore: \(h({\theta }_{S})={(1-\gamma )}^{1/6}\)
Moreover, when the deviatory mechanism criterion is reached: \({s}_{\mathrm{II}}h({\theta }_{S})+{R}_{m}{I}_{1}=0\)
Hence the relationship:
\({I}_{1}=\frac{\sqrt{6}{\sigma }_{\mathrm{xx}}^{0}}{\sqrt{\frac{2}{3}}-\frac{{R}_{m}}{{(1-\gamma )}^{1/6}}}\)
and finally, for the vertical constraint, we have:
\({\sigma }_{\mathrm{zz}}=\frac{\sqrt{6}{\sigma }_{\mathrm{xx}}^{0}}{\sqrt{\frac{2}{3}}-\frac{{R}_{m}}{{(1-\gamma )}^{1/6}}}-2{\sigma }_{\mathrm{xx}}^{0}\)
In addition, it can be calculated that the transition between the elastic and perfectly plastic states occurs for an axial deformation equal to:
\({\varepsilon }_{\mathrm{zz}}=\frac{\mu (3\lambda +2\mu )}{\lambda +\mu }\left[\frac{\sqrt{6}{\sigma }_{\mathrm{xx}}^{0}}{\sqrt{\frac{2}{3}}-\frac{{R}_{m}}{{(1-\gamma )}^{1/6}}}-2{\sigma }_{\mathrm{xx}}^{0}\right]\)
2.2. Benchmark results#
Constraints \({\sigma }_{\mathrm{xx}}\), \({\sigma }_{\mathrm{yy}}\), and \({\sigma }_{\mathrm{zz}}\) at points \(A\), \(B\), and \(C\).
2.3. Uncertainty about the solution#
Analytical solution for CJS1.