Benchmark solution ===================== Development of the analytical solution for CJS1 ------------------------------------------------- We always have: .. image:: images/Object_10.svg :width: 109 :height: 29 .. _RefImage_Object_10.svg: where .. image:: images/Object_11.svg :width: 109 :height: 29 .. _RefImage_Object_11.svg: represents the confinement pressure. Still to be determined .. image:: images/Object_12.svg :width: 109 :height: 29 .. _RefImage_Object_12.svg: . **Elastic phase:** By simply writing the elastic law, we have: :math:`{\sigma }_{\mathrm{xx}}^{0}={\sigma }_{\mathrm{xx}}^{0}+\lambda {\varepsilon }_{\mathrm{zz}}+(\lambda +2\mu ){\varepsilon }_{\mathrm{xx}}+\lambda {\varepsilon }_{\mathrm{xx}}` :math:`{\sigma }_{\mathrm{zz}}={\sigma }_{\mathrm{zz}}^{0}+(\lambda +2\mu ){\varepsilon }_{\mathrm{zz}}+2\lambda {\varepsilon }_{\mathrm{xx}}` where here :math:`\lambda` and :math:`\mu` are the Lamé coefficients. By eliminating :math:`{\varepsilon }_{\mathrm{xx}}` between these two equations, we find: :math:`{\sigma }_{\mathrm{zz}}={\sigma }_{\mathrm{zz}}^{0}+\frac{\mu (3\lambda +2\mu )}{(\lambda +\mu )}{\varepsilon }_{\mathrm{zz}}` **Plastic phase:** We have: .. image:: images/Object_18.svg :width: 109 :height: 29 .. _RefImage_Object_18.svg: where .. image:: images/Object_19.svg :width: 109 :height: 29 .. _RefImage_Object_19.svg: represents the confinement pressure. We deduce for the components of the diverter .. image:: images/Object_20.svg :width: 109 :height: 29 .. _RefImage_Object_20.svg: : :math:`{s}_{\mathrm{zz}}=2\left[\frac{1}{3}{I}_{1}-{\sigma }_{\mathrm{xx}}^{0}\right]` and :math:`{s}_{\mathrm{xx}}={\sigma }_{\mathrm{xx}}^{0}-\frac{1}{3}{I}_{1}` either: :math:`{s}_{\mathrm{II}}=\sqrt{6}\left[{\sigma }_{\mathrm{xx}}^{0}-\frac{1}{3}{I}_{1}\right]` and :math:`\mathrm{det}(\underline{\underline{s}})=2{\left[\frac{1}{3}{I}_{1}-{\sigma }_{\mathrm{xx}}^{0}\right]}^{3}` Therefore: :math:`h({\theta }_{S})={(1-\gamma )}^{1/6}` Moreover, when the deviatory mechanism criterion is reached: :math:`{s}_{\mathrm{II}}h({\theta }_{S})+{R}_{m}{I}_{1}=0` Hence the relationship: :math:`{I}_{1}=\frac{\sqrt{6}{\sigma }_{\mathrm{xx}}^{0}}{\sqrt{\frac{2}{3}}-\frac{{R}_{m}}{{(1-\gamma )}^{1/6}}}` and finally, for the vertical constraint, we have: :math:`{\sigma }_{\mathrm{zz}}=\frac{\sqrt{6}{\sigma }_{\mathrm{xx}}^{0}}{\sqrt{\frac{2}{3}}-\frac{{R}_{m}}{{(1-\gamma )}^{1/6}}}-2{\sigma }_{\mathrm{xx}}^{0}` In addition, it can be calculated that the transition between the elastic and perfectly plastic states occurs for an axial deformation equal to: :math:`{\varepsilon }_{\mathrm{zz}}=\frac{\mu (3\lambda +2\mu )}{\lambda +\mu }\left[\frac{\sqrt{6}{\sigma }_{\mathrm{xx}}^{0}}{\sqrt{\frac{2}{3}}-\frac{{R}_{m}}{{(1-\gamma )}^{1/6}}}-2{\sigma }_{\mathrm{xx}}^{0}\right]` Benchmark results ---------------------- Constraints :math:`{\sigma }_{\mathrm{xx}}`, :math:`{\sigma }_{\mathrm{yy}}`, and :math:`{\sigma }_{\mathrm{zz}}` at points :math:`A`, :math:`B`, and :math:`C`. Uncertainty about the solution --------------------------- Analytical solution for CJS1.