13. K modeling#

13.1. Characteristics of modeling#

Meshing with ``3D_ INCO_UP « and » DEFORMATION =” GDEF_LOG “``elements incompressible types HEXA20 only.

Face with imposed radial displacement

_images/10008724000069D500003780C1B929A3B101AFC0.svg

Following axis \(z\):

  • total thickness \(e=0.01\)

  • 2 layers of elements

The boundary conditions are:

  • Zero vertical displacement on “FACSUP” and “FACINF” faces \(\mathit{AEFD}\) (\(z=0\) and \(z=0.01\)): DZ = 0.

  • Normal movement stuck on the “FACEAB” faces (side \(\mathit{AB}\), DX = 0) and “FACEEF” (side \(\mathit{EF}\), DNOR = 0.)

  • Imposed displacement on the inside of the cylinder “FACEAE”: face \(\mathit{AE}\) DNOR = -6.10-5

13.2. Characteristics of the mesh#

Number of knots: 1501 knots

Number of meshes: 240 HEXA20

13.3. Tested sizes and results#

Displacements and constraints SIGM_NOEU are evaluated at points \(A\) and \(F\). The components of field SIEQ_NOEU are tested to the point \(A\) only.

Identification

Reference type

Reference

Tolerance

\(A\)

\(\mathit{u}\) (X)

ANALYTIQUE

  1. 10-3

\(\mathit{v}\) (DY)

ANALYTIQUE

  1. 10-5

  1. 10-4

\(\mathit{\sigma_{xx}}\)

ANALYTIQUE

99.9566

0.01

\(\mathit{\sigma_{yy}}\)

ANALYTIQUE

-59.9955

0.03

\(\mathit{\sigma_{zz}}\)

ANALYTIQUE

19.9326

0.05

\(\mathit{\sigma_{xy}}\)

ANALYTIQUE

0.03

VMIS

ANALYTIQUE

138.5226

0.001

TRESCA

ANALYTIQUE

159.9521

0.001

PRIN_1

ANALYTIQUE

-59.9955

0.0025

PRIN_2

ANALYTIQUE

19.9326

0.005

PRIN_3

ANALYTIQUE

99.9566

0.0005

VMIS_SG

ANALYTIQUE

138.5226

0.001

Identification

Reference type

Reference

Tolerance

\(F\)

\(\mathit{u}\) (X)

ANALYTIQUE

-2.1217 10-5

0.005

\(\mathit{v}\) (DY)

ANALYTIQUE

2.1217 10-5

0.005

\(\mathit{\sigma_{xx}}\)

ANALYTIQUE

20.003

0.002

\(\mathit{\sigma_{yy}}\)

ANALYTIQUE

20.003

0.002

\(\mathit{\sigma_{zz}}\)

ANALYTIQUE

20.003

0.0025

\(\mathit{\sigma_{xy}}\)

ANALYTIQUE

20.003

0.0015

For Green-Lagrange deformations:

Identification

Reference type

Reference

Tolerance

\(A\)

\({E}_{\mathit{xx}}\)

ANALYTIQUE

0.000599576100401

2E-4

\({E}_{\mathit{yy}}\)

ANALYTIQUE

-0.00059885996551

2.2E-3

13.4. notes#

Very good results are obtained since for all the quantities examined, the difference between the solution obtained with the code and the analytical solution is less than \(\text{0.5%}\) for trips and less to \(\text{5%}\) for constraints.