1. Reference problem#

1.1. Geometry#

_images/10000000000002DA0000024BBCB7A0517499B7B4.png
Face

\(\mathit{YZ}\)

\((\mathrm{1,3}\mathrm{,5}\mathrm{,7})\)

1.2. Material properties#

isotropic elasticity:

\(E=206\mathrm{400.MPa}\)

\(\nu \mathrm{=}0.3\)

plasticity: (coefficients of the Rousselier model)

\(D=2.\) \({f}_{0}\mathrm{=}{5.10}^{\mathrm{-}4}\) \({\sigma }_{1}=\mathrm{490.MPa}\)

The rational traction curve is entered point by point with:

\(R(p)\mathrm{=}{r}_{i}+({r}_{0}\mathrm{-}{r}_{i}){e}^{\mathrm{-}\mathit{bp}}\)

with \(p\): cumulative plastic deformation

and \({r}_{i}\mathrm{=}1500\mathit{MPa}\)

\({r}_{0}\mathrm{=}\mathrm{520.MPa}\)

\(b=2.4\)

_images/1000038A000011C700000D06D710BB60389913EE.svg

1.3. Boundary conditions and loads#

\(\mathrm{N04}\)

\(\mathrm{dx}=\mathrm{dy}=0\)

Face \(\mathit{YZ}\):

\(\mathrm{FX}=\mathrm{FY}=–F(t)\)

\(\mathrm{N08}\)

\(\mathit{dx}\mathrm{=}\mathit{dy}\mathrm{=}\mathit{dz}\mathrm{=}0\)

Face \(\mathrm{XZ}\):

\(\mathrm{FX}=–F(t)\)

\(\mathrm{N02},\mathrm{N06}\)

\(\mathrm{dx}=0\)

Face \(\mathrm{1YZ}\):

\(\mathrm{FY}=F(t)\)

Face \(\mathrm{1XZ}\):

\(\mathrm{FX}=F(t)\)

409.707

_images/100006AA000069BB00004FE4CCC186550A7F1C7E.svg

1.4. Initial conditions#

Zero stresses and deformations at \(t=0\).