1. Reference problem#

1.1. Geometry#

It is a rectangular plate with a thickness of 1mm, with a hole and modelled with DKT DKT. Only a quarter of the plate is modelled thanks to symmetries. Dimensions are given in millimeters.

_images/Shape1.gif

1.2. Boundary conditions and loads#

Symmetry conditions

The plate is stuck at \(\mathrm{Ox}\) along side \(\mathit{AG}\mathrm{:}\mathit{DY}=0.0,\mathit{DZ}=0.0,\mathit{DRY}=0.0\).

It is stuck at \(\mathrm{Oy}\) along side \(\mathit{BD}\mathrm{:}\mathit{DX}=0.0,\mathit{DZ}=0.0,\mathit{DRX}=0.0\).

Loading under imposed constraint

It is subject to traction \(p(t)\) following \(\mathrm{Oy}\) distributed on the side \(\mathrm{FG}\).

\(p(t=0)=0\), \(p(t=1000)=1000\).

We stop at the very beginning of plasticity at the edge of the hole, i.e. at 110s.

1.3. Material properties#

The behavior is Von Mises elastoplastic, with isotropic work hardening.

The elastic characteristics are:

  • Young’s module \(E=200000\mathrm{MPa}\);

  • Poisson’s ratio \(\nu =0.3\);

  • Elastic limit: \(200\mathrm{MPa}\);

Work hardening is deduced from the traction curve defined by the following data (constant straight extension PROL_DROITE =” CONSTANT “):

_images/100000000000034A0000025352CD0E317977B432.png

Epsilon

Sigma ( \(\mathit{Mpa}\) )

Epsilon

Sigma ( \(\mathit{Mpa}\) )

1.00000E-03

2.00000E+02

1.06000E-01

2.69626E+02

2.00000E+02

6.00000E-03

2.15275E+02

1.11000E-01

2.69709E+02

1.10000E-02

2.27253E+02

1.16000E-01

2.69773E+02

2.69773E+02

1.60000E-02

2.36630E+02

1.21000E-01

2.69823E+02

2.69823E+02

2.10000E-02

2.43964E+02

1.26000E-01

2.69862E+02

2.60000E-02

2.49694E+02

1.31000E-01

2.69893E+02

3.10000E-02

2.54168E+02

1.36000E-01

2.69917E+02

2.69917E+02

3.60000E-02

2.57659E+02

1.41000E-01

2.69935E+02

2.69935E+02

4.10000E-02

2.60382E+02

1.46000E-01

2.69949E+02

2.69949E+02

4.60000E-02

2.62506E+02

1.51000E-01

2.69961E+02

5.10000E-02

2.64161E+02

1.56000E-01

2.69969E+02

5.60000E-02

2.65451E+02

1.61000E-01

2.69976E+02

6.10000E-02

2.66457E+02

1.66000E-01

2.69981E+02

6.60000E-02

2.67240E+02

1.71000E-01

2.69986E+02

2.69986E+02

7.10000E-02

2.67850E+02

1.76000E-01

2.69989E+02

7.60000E-02

2.68325E+02

1.81000E-01

2.69991E+02

2.69991E+02

8.10000E-02

2.68696E+02

1.86000E-01

2.69993E+02

8.60000E-02

2.68984E+02

1.91000E-01

2.69994E+02

9.10000E-02

2.69209E+02

1.96000E-01

2.69996E+02

2.69209E+02

9.60000E-02

2.69384E+02

2.00000E-01

2.69996E+02

1.01000E-01

2.69520E+02

Table 1.3-1