4. Model A results#

4.1. Tested sizes and results#

We test the components \(\mathrm{yy}\) and \(\mathit{xy}\) of the element that correspond to the normal and tangential components of the local law of behavior in the interface, using the constraint field SIEF_ELGA as well as the damage value \({D}_{T}\) (which corresponds to the second variable of the field VARI_ELGA). The values are tested at the Gauss point 1 of the joint element, at 4 different time steps: at the beginning of loading, during the growth phase of the damage, after the peak of the maximum bond strength and at the end of the loading.

Field SIEF_ELGA component SIGN

Identification

Reference

Code_Aster

\(\text{\%}\) difference

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(0.2\mathit{mm}\)

-9.94080 E-02

-1.00976 E-01

1.577

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(0.8\mathit{mm}\)

-1.54560 E-01

-1.52328 E-01

-1.444

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(1.2\mathit{mm}\)

-1.44060 E-01

-1.47200 E-01

2.180

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(3.0\mathit{mm}\)

-1.06920 E-01

-1.06914 E-01

-0.006

Field SIEF_ELGA component SITX

Identification

Reference

Code_Aster

\(\text{\%}\) difference

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(0.2\mathit{mm}\)

-7.58900 E+00

-7.65768 E+00

0.905

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(0.8\mathit{mm}\)

-1.17960 E+01

-1.15521 E+01

-2.068

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(1.2\mathit{mm}\)

-1.09950 E+01

-1.11632 E+01

-1.09950 E+01

1.530

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(3.0\mathit{mm}\)

-8.15940 E+00

-8.10802 E+00

-0.630

Field VARI_ELGA component V2 **** (tangential damage variable) **

Identification

Reference

Code_Aster

\(\text{\%}\) difference

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(0.2\mathit{mm}\)

9.97203 E-01

9.97203 E-01

-2.19 E-05

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(0.8\mathit{mm}\)

9.98948 E-01

9.98915 E-01

-0.003

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(1.2\mathit{mm}\)

9.99369 E-01

9.99309 E-01

-0.006

For an imposed displacement \({U}_{\mathrm{TT}}\) = \(3.0\mathit{mm}\)

9.99854 E-01

9.99821 E-01

-0.003