1. Reference problem#
1.1. Geometry#
A bundle of multi-fiber Euler beams with a length of 1 m in the X direction is described using ten multi-fiber Euler beams positioned in the YZ plane. The following table shows the position of these ten beams:
Beam number |
YP |
ZP |
1 |
0 |
0 |
2 |
0 |
-2 |
3 |
0 |
3 |
4 |
4 |
0 |
5 |
-1 |
0 |
6 |
-3 |
-1 |
7 |
-3 |
3 |
8 |
-2 |
-3 |
9 |
5 |
-3 |
10 |
1 |
-3 |
All the beams are discretized using 4 fibers with a surface area of 0.02m2. These are positioned, in relation to the beam (in m):
Fiber number |
Y position |
Z position |
1 |
0.1 |
0 |
2 |
0 |
0.1 |
3 |
-0,1 |
0 |
4 |
0 |
-0,1 |
1.2. Material properties#
: label: EQ-None
E=2.0mathit {E11}mathit {Pa}
\(\mathit{Gx}=1\mathit{Pa}\) |
Flexural modulus |
\(\mathrm{\nu }=\mathrm{0,3}\) |
Poisson’s ratio |
\(A=1.E-11\) |
Constant |
\(B=10.E-10\) |
Constant |
\(C=0\) |
Constant |
\(\mathit{CSTE}\text{\_}\mathit{TPS}=100\) |
Time constant |
\(\mathit{ENER}\text{\_}\mathit{ACT}\) |
Activation Energy |
\(\mathit{GRAN}\text{\_}\mathit{FO}=\mathit{INTERGR}\) |
Law of growth |