3. Modeling A#

3.1. Characteristics of modeling#

\({u}_{y}^{i}={U}_{y}\left(x\right)-{Z}^{i}{\omega }_{x}\left(x\right)\)

\({u}_{z}^{i}={U}_{z}\left(x\right)+{Y}^{i}{\omega }_{x}\left(x\right)\)

\({\theta }_{x}^{i}={\theta }_{x}(x)\)

\({\theta }_{y}^{i}={\theta }_{y}(x)\)

\({\theta }_{z}^{i}={\theta }_{z}(x)\)

with:

U x

U y

U y

U z

†x

Ω x

Ω y

oh y

oh y

U z

U z

1

1

1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

0.1

Note that the rotation of the grids is taken to be equal to that of the beams.

3.2. Results#

Stress tests at the node (X=0) of the skeleton element:

Node 1

Reference value

Calculated value

Precision (in%)

Reference value

Fx

-2337344934.27

-2337344934.27

\(0\)

NON_REGRESSION

Vy

-152304411.85

-152304411.85

\(0\)

NON_REGRESSION

Vz

-159844234.21

-159844234.21

\(0\)

NON_REGRESSION

Mx

-1.0

-1.0

\(0\)

NON_REGRESSION

My

78665480.05

78665480.05

\(0\)

NON_REGRESSION

Mz

-77408842.98

-77408842.98

\(0\)

NON_REGRESSION

Mgx

-275203516.45

-275203516.45

\(0\)

NON_REGRESSION

Mgy

-201061929.83

-201061929.83

\(0\)

NON_REGRESSION

Mgz

-1834690109.7

-1834690109.7

\(0\)

NON_REGRESSION