1. Reference problem#

1.1. Geometry#

_images/100002000000015D00000157F16083A09BAE7D4A.png

Cube geometry \((m)\): \(L=1\)

Coordinates of points \((m)\):

\(\mathrm{NO1}:(0.0,1.0,0.0)\) \(\mathrm{NO2}:(1.0,1.0,0.0)\) \(\mathrm{NO3}:(0.0,0.0,0.0)\) \(\mathrm{NO4}:(1.0,0.0,0.0)\) \(\mathrm{NO5}:(0.0,1.0,1.0)\) \(\mathrm{NO6}:(1.0,1.0,1.0)\) \(\mathrm{NO7}:(0.0,0.0,1.0)\) \(\mathrm{NO8}:(1.0,0.0,1.0)\)

mesh:

\(\mathrm{MA1}\): whole cube

1.2. Material properties#

      • Elastic

        • \(E={10}^{5}\mathrm{Pa}\) Young’s module

        • \(\nu =0.3\) Poisson’s ratio

        • \(\alpha =0.\text{}/{}^{°}C\) Expansion coefficient

      • Lemaître

        • \(\frac{1}{K}={10}^{-6}\)

        • \(\frac{1}{m}=0.207060772\)

        • \(n=2.3364\)

        • \(L=0.\)

        • \({\phi }_{0}=4.240281\times {10}^{21}\)

        • \(\beta =1.2\)

        • \(\mathrm{QSR}\text{\_}K=3321.093\)

        • \(a=-1.51\times {10}^{-16}\)

        • \(b=1.542\times {10}^{-13}\)

        • \(S=0.396\)

1.3. Boundary conditions and loads#

    • Imposed displacement \((m)\):

        • \(\mathrm{N01}:\mathrm{DX}=\mathrm{DZ}=0\)

        • \(\mathrm{N03}:\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=0\)

        • \(\mathrm{N05}:\mathrm{DX}=0\)

        • \(\mathrm{N07}:\mathrm{DX}=0\)

      • Charging

The load is imposed on the \(\mathrm{N02},\mathrm{N04},\mathrm{N06},\mathrm{N08},\) nodes, varies progressively over the \(t\in [\mathrm{0,1}\mathrm{.}]\) interval and remains constant over the \(t\in \text{]}1.,32.{10}^{6}\text{]}\) interval as in the figure below.

_images/Shape1.gif
  • Fluence imposed on the nodes.

Instant \((s)\)

Fluence \(({\mathrm{n.m}}^{-2})\)

\(0.0\)

\(1.0\)

\(7.20000\times {10}^{21}\)

\(8.64990\times {10}^{2}\)

\(6.22793\times {10}^{24}\)

\(1.72898E+03\)

\(1.24487\times {10}^{25}\)

\(2.16097\times {10}^{3}\)

\(1.24487\times {10}^{25}\)

\(2.59297\times {10}^{3}\)

\(1.86694\times {10}^{25}\)

\(3.45696\times {10}^{3}\)

\(2.48901\times {10}^{25}\)

  • Temperature imposed on the knots.

\(T=299.85°C\) with a reference temperature of \({T}_{\mathrm{ref}}=299.85°C\)