1. Reference problem#
1.1. Geometry#

Cube geometry \((m)\): \(L=1\)
Coordinates of points \((m)\):
\(\mathrm{NO1}:(0.0,1.0,0.0)\) \(\mathrm{NO2}:(1.0,1.0,0.0)\) \(\mathrm{NO3}:(0.0,0.0,0.0)\) \(\mathrm{NO4}:(1.0,0.0,0.0)\) \(\mathrm{NO5}:(0.0,1.0,1.0)\) \(\mathrm{NO6}:(1.0,1.0,1.0)\) \(\mathrm{NO7}:(0.0,0.0,1.0)\) \(\mathrm{NO8}:(1.0,0.0,1.0)\)
mesh:
\(\mathrm{MA1}\): whole cube
1.2. Material properties#
Elastic
\(E={10}^{5}\mathrm{Pa}\) Young’s module
\(\nu =0.3\) Poisson’s ratio
\(\alpha =0.\text{}/{}^{°}C\) Expansion coefficient
Lemaître
\(\frac{1}{K}={10}^{-6}\)
\(\frac{1}{m}=0.207060772\)
\(n=2.3364\)
\(L=0.\)
\({\phi }_{0}=4.240281\times {10}^{21}\)
\(\beta =1.2\)
\(\mathrm{QSR}\text{\_}K=3321.093\)
\(a=-1.51\times {10}^{-16}\)
\(b=1.542\times {10}^{-13}\)
\(S=0.396\)
1.3. Boundary conditions and loads#
Imposed displacement \((m)\):
\(\mathrm{N01}:\mathrm{DX}=\mathrm{DZ}=0\)
\(\mathrm{N03}:\mathrm{DX}=\mathrm{DY}=\mathrm{DZ}=0\)
\(\mathrm{N05}:\mathrm{DX}=0\)
\(\mathrm{N07}:\mathrm{DX}=0\)
Charging
The load is imposed on the \(\mathrm{N02},\mathrm{N04},\mathrm{N06},\mathrm{N08},\) nodes, varies progressively over the \(t\in [\mathrm{0,1}\mathrm{.}]\) interval and remains constant over the \(t\in \text{]}1.,32.{10}^{6}\text{]}\) interval as in the figure below.

Fluence imposed on the nodes.
Instant \((s)\) |
Fluence \(({\mathrm{n.m}}^{-2})\) |
\(0.0\) |
|
\(1.0\) |
|
\(8.64990\times {10}^{2}\) |
|
\(1.72898E+03\) |
|
\(2.16097\times {10}^{3}\) |
|
\(2.59297\times {10}^{3}\) |
|
\(3.45696\times {10}^{3}\) |
|
Temperature imposed on the knots.
\(T=299.85°C\) with a reference temperature of \({T}_{\mathrm{ref}}=299.85°C\)