1. Reference problem#

1.1. Geometry#

_images/10000201000000E4000000E9C23475EFDC23EB54.png

height: \(h=1m\)

width: \(p=1m\)

Point coordinates (in meters):

\(A\)

\(x\)

\(y\)

\(z\)

1.2. Property of materials#

Elastic properties under the keyword ELAS:

\(E=24.6\) \(\mathrm{MPa}\)

\(\mathrm{\nu }=0.47\)

\(\mathrm{\alpha }={10}^{-5}\) \({K}^{-1}\)

Viscoplastic properties under the keyword VISC_MAXWELL:

Infinite volume viscosity \({\mathrm{\eta }}_{v}={10}^{10}\) \(\mathit{Pa}\mathrm{.}s\)

Deviatoric viscosity \({\mathrm{\eta }}_{d}=1.59{10}^{7}\) \(\mathit{Pa}\mathrm{.}s\)

1.3. Initial conditions, boundary conditions, and loading#

Phase 1:

The sample is brought to a homogeneous state of stresses: \({\mathrm{\sigma }}_{\mathit{xx}}^{0}={\mathrm{\sigma }}_{\mathit{yy}}^{0}={\mathrm{\sigma }}_{\mathit{zz}}^{0}=\mathrm{0,5}\mathit{MPa}\) in 1000 s, by imposing the corresponding total pressure on the front, right lateral and upper faces. The movements are blocked on the back (\({u}_{x}=0\)), left side (\({u}_{y}=0\)) and bottom (\({u}_{z}=0\)) faces.

Phase 2:

The movements are kept blocked on the rear (\({u}_{x}=0\)), left lateral (\({u}_{y}=0\)) and lower (\({u}_{z}=0\)) faces.

An imposed displacement is applied on the upper face in order to obtain a deformation \({\mathrm{\epsilon }}_{\mathit{zz}}=-\mathrm{0,01}\) (for 1000 s counted from the start of phase 2). On the front and right lateral faces, boundary conditions under total stress are maintained:

\(\mathrm{\sigma }\mathrm{.}n={\mathrm{\sigma }}_{0}(=0.5\mathit{MPa})\)