1. Reference problem#
1.1. Geometry#

height: \(h=1m\)
width: \(p=1m\)
Point coordinates (in meters):
\(A\) |
|
\(x\) |
|
\(y\) |
|
\(z\) |
1.2. Property of materials#
Elastic properties under the keyword ELAS:
\(E=24.6\) \(\mathrm{MPa}\)
\(\mathrm{\nu }=0.47\)
\(\mathrm{\alpha }={10}^{-5}\) \({K}^{-1}\)
Viscoplastic properties under the keyword VISC_MAXWELL:
Infinite volume viscosity \({\mathrm{\eta }}_{v}={10}^{10}\) \(\mathit{Pa}\mathrm{.}s\)
Deviatoric viscosity \({\mathrm{\eta }}_{d}=1.59{10}^{7}\) \(\mathit{Pa}\mathrm{.}s\)
1.3. Initial conditions, boundary conditions, and loading#
Phase 1:
The sample is brought to a homogeneous state of stresses: \({\mathrm{\sigma }}_{\mathit{xx}}^{0}={\mathrm{\sigma }}_{\mathit{yy}}^{0}={\mathrm{\sigma }}_{\mathit{zz}}^{0}=\mathrm{0,5}\mathit{MPa}\) in 1000 s, by imposing the corresponding total pressure on the front, right lateral and upper faces. The movements are blocked on the back (\({u}_{x}=0\)), left side (\({u}_{y}=0\)) and bottom (\({u}_{z}=0\)) faces.
Phase 2:
The movements are kept blocked on the rear (\({u}_{x}=0\)), left lateral (\({u}_{y}=0\)) and lower (\({u}_{z}=0\)) faces.
An imposed displacement is applied on the upper face in order to obtain a deformation \({\mathrm{\epsilon }}_{\mathit{zz}}=-\mathrm{0,01}\) (for 1000 s counted from the start of phase 2). On the front and right lateral faces, boundary conditions under total stress are maintained:
\(\mathrm{\sigma }\mathrm{.}n={\mathrm{\sigma }}_{0}(=0.5\mathit{MPa})\)