1. Reference problem#
1.1. Geometry#
The geometry is chosen deliberately simple, to translate a state of homogeneous stresses and deformations, as is the case in uniaxial traction. This is a volume element represented by a square with side \(\mathrm{0.01mm}\). The modeling is axisymmetric, and the traction takes place with imposed deformation.
1.2. Material properties#
The characteristics are as follows:
Keyword ELAS:
YOUNG = \(143006.0\mathrm{MPa}\)
NU= \(0.33\)
Keyword CIN2_CHAB:
R0= \(0.01893467592\mathrm{MPa}\)
B= \(0.2709891156\)
R_I= \(0.04392231516\mathrm{MPa}\)
K= \(2.751852265\)
W= \(-1.157794066\)
G1_0= \(211.5567568\)
G2_0= \(0.9105873193\)
C1_I= \(3946.594428\)
C2_I= \(49.33873423\)
A_I= \(10.60515818\)
Keyword LEMAITRE
EXP_N = \(14.97577311\)
ETA = \(278.5754646\)
UN_SUR_K = \(1/278.5754646\)
UN_SUR_M = \(0.0\)
1.3. Boundary conditions and loads#
\(\mathrm{DY}=0\) on the bottom
\(\mathrm{DX}=0\) on the left side
\(\mathrm{DY}\) imposed on the top, such as:
\(\mathrm{DY}(t)=({\mathrm{EPS}}_{\mathrm{final}}\ast H)/\mathrm{tmax}\ast t\)
With \({\mathrm{EPS}}_{\mathrm{final}}=0.01\)
\(H=0.01\mathrm{mm}\)
\(\mathrm{Tmax}=\mathrm{10000s}\)
This corresponds to an imposed deformation rate of \(0.01/10000=1.E–6/s\)
1.4. Initial conditions#
Zero stresses and deformations.