Reference problem ===================== .. _Ref482175678: Geometry --------- The geometry is chosen deliberately simple, to translate a state of homogeneous stresses and deformations, as is the case in uniaxial traction. This is a volume element represented by a square with side :math:`\mathrm{0.01mm}`. The modeling is axisymmetric, and the traction takes place with imposed deformation. Material properties ---------------------- The characteristics are as follows: Keyword ELAS: YOUNG = :math:`143006.0\mathrm{MPa}` NU= :math:`0.33` Keyword CIN2_CHAB: R0= :math:`0.01893467592\mathrm{MPa}` B= :math:`0.2709891156` R_I= :math:`0.04392231516\mathrm{MPa}` K= :math:`2.751852265` W= :math:`-1.157794066` G1_0= :math:`211.5567568` G2_0= :math:`0.9105873193` C1_I= :math:`3946.594428` C2_I= :math:`49.33873423` A_I= :math:`10.60515818` Keyword LEMAITRE EXP_N = :math:`14.97577311` ETA = :math:`278.5754646` UN_SUR_K = :math:`1/278.5754646` UN_SUR_M = :math:`0.0` Boundary conditions and loads ------------------------------------- :math:`\mathrm{DY}=0` on the bottom :math:`\mathrm{DX}=0` on the left side :math:`\mathrm{DY}` imposed on the top, such as: :math:`\mathrm{DY}(t)=({\mathrm{EPS}}_{\mathrm{final}}\ast H)/\mathrm{tmax}\ast t` With :math:`{\mathrm{EPS}}_{\mathrm{final}}=0.01` :math:`H=0.01\mathrm{mm}` :math:`\mathrm{Tmax}=\mathrm{10000s}` This corresponds to an imposed deformation rate of :math:`0.01/10000=1.E–6/s` Initial conditions -------------------- Zero stresses and deformations.