1. Reference problem#

1.1. Geometry#

_images/100002000000033B0000010F68EF68BB5B4F08C5.png

Figure 1.1 Problem geometry and loading system

Geometry of the \((m)\) beam:

\(L=2.436\)

\(R=0.00795\)

\(r=0.00680\)

1.2. Material properties#

Beam

\(E=2.07\mathrm{E11}\mathrm{Pa}\)

Young’s module

\(\nu =0.3\)

Poisson’s ratio

\(\rho =7870.0{\mathrm{kg.m}}^{-3}\)

Density

\(\mathrm{AMOR}\text{\_}\mathrm{ALPHA}\text{}=\text{}1.79E-5{\mathrm{N.s.m}}^{-1}\)

\(\mathrm{AMOR}\text{\_}\mathrm{BETA}\text{}=\text{}0.1526{\mathrm{N.kg}}^{-1}\)

The coefficients \(\alpha\) and \(\beta\) make it possible to build a viscous damping matrix proportional to stiffness and mass \([C]=\alpha [K]+\beta [M]\)

Obstacles

\(\mathit{RIGI}\text{\_}\mathit{NOR}=1.0E5{\mathit{N.m}}^{-1}\)

normal stiffness coefficient

\(\mathrm{AMOR}\text{\_}\mathrm{NOR}=0.28{\mathrm{N.m.s}}^{-1}\)

normal damping coefficient

1.3. Boundary conditions and loads#

Imposed displacement:

All nodes on the beam:

\(\mathrm{DZ}=0\),

\(\mathrm{DRY}=0\)

\(\mathrm{DRX}=0\) »

Node \(\mathrm{N1}\):

\(\mathrm{DX}=0\), \(\mathrm{DY}=0\), \(\mathrm{DRZ}=0\)

Imposed load \((N)\):

Knots \(\mathrm{N3}\) to \(\mathrm{N13}\) and \(\mathrm{N27}\) to \(\mathrm{N37}\)

\(\mathrm{FORCEP}=4.138\text{}\mathrm{sin}(\omega t)\)

Knots \(\mathrm{N5}\) to \(\mathrm{N25}\) and \(\mathrm{N39}\) to \(\mathrm{N49}\)

\(\mathrm{FORCEM}=-4.138\text{}\mathrm{sin}(\omega t)\)

with \(\omega =251.2{\mathrm{rad.s}}^{-1}(40\mathrm{Hz})\)

Obstacles located in plane \(Y\) following direction \(y\):

\(\mathrm{N14}\)

Game = \(0.406E-3m\)

origin = \((0.609\mathrm{,0}.0\mathrm{,0}.0)\)

\(\mathrm{N26}\)

Game = \(0.406E-3m\)

origin = \((1.218\mathrm{,0}.0\mathrm{,0}.0)\)

\(\mathrm{N38}\)

Game = \(0.406E-3m\)

origin = \((1.827\mathrm{,0}.0\mathrm{,0}.0)\)

\(\mathrm{N2}\)

Game = \(0.406E-3m\)

origin = \((2.436\mathrm{,0}.0\mathrm{,0}.0)\)