Reference problem ===================== Geometry --------- .. image:: images/100002000000033B0000010F68EF68BB5B4F08C5.png :width: 6.4236in :height: 2.0681in .. _RefImage_100002000000033B0000010F68EF68BB5B4F08C5.png: **Figure 1.1 Problem geometry and loading system** Geometry of the :math:`(m)` beam: :math:`L=2.436` :math:`R=0.00795` :math:`r=0.00680` Material properties ---------------------- Beam .. csv-table:: ":math:`E=2.07\mathrm{E11}\mathrm{Pa}` ", "Young's module" ":math:`\nu =0.3` ", "Poisson's ratio" ":math:`\rho =7870.0{\mathrm{kg.m}}^{-3}` ", "Density" ":math:`\mathrm{AMOR}\text{\_}\mathrm{ALPHA}\text{}=\text{}1.79E-5{\mathrm{N.s.m}}^{-1}` ", "" ":math:`\mathrm{AMOR}\text{\_}\mathrm{BETA}\text{}=\text{}0.1526{\mathrm{N.kg}}^{-1}` ", "" The coefficients :math:`\alpha` and :math:`\beta` make it possible to build a viscous damping matrix proportional to stiffness and mass :math:`[C]=\alpha [K]+\beta [M]` Obstacles .. csv-table:: ":math:`\mathit{RIGI}\text{\_}\mathit{NOR}=1.0E5{\mathit{N.m}}^{-1}` ", "normal stiffness coefficient" ":math:`\mathrm{AMOR}\text{\_}\mathrm{NOR}=0.28{\mathrm{N.m.s}}^{-1}` ", "normal damping coefficient" Boundary conditions and loads ------------------------------------- Imposed displacement: .. csv-table:: "All nodes on the beam:", ":math:`\mathrm{DZ}=0`,", :math:`\mathrm{DRY}=0`, :math:`\mathrm{DRX}=0`" "Node :math:`\mathrm{N1}`:", ":math:`\mathrm{DX}=0`, :math:`\mathrm{DY}=0`, :math:`\mathrm{DRZ}=0`" Imposed load :math:`(N)`: .. csv-table:: "Knots :math:`\mathrm{N3}` to :math:`\mathrm{N13}` and :math:`\mathrm{N27}` to :math:`\mathrm{N37}` "," :math:`\mathrm{FORCEP}=4.138\text{}\mathrm{sin}(\omega t)`" "Knots :math:`\mathrm{N5}` to :math:`\mathrm{N25}` and :math:`\mathrm{N39}` to :math:`\mathrm{N49}` "," :math:`\mathrm{FORCEM}=-4.138\text{}\mathrm{sin}(\omega t)`" with :math:`\omega =251.2{\mathrm{rad.s}}^{-1}(40\mathrm{Hz})` Obstacles located in plane :math:`Y` following direction :math:`y`: .. csv-table:: ":math:`\mathrm{N14}` ", "Game = :math:`0.406E-3m` ", "origin = :math:`(0.609\mathrm{,0}.0\mathrm{,0}.0)`" ":math:`\mathrm{N26}` ", "Game = :math:`0.406E-3m` ", "origin = :math:`(1.218\mathrm{,0}.0\mathrm{,0}.0)`" ":math:`\mathrm{N38}` ", "Game = :math:`0.406E-3m` ", "origin = :math:`(1.827\mathrm{,0}.0\mathrm{,0}.0)`" ":math:`\mathrm{N2}` ", "Game = :math:`0.406E-3m` ", "origin = :math:`(2.436\mathrm{,0}.0\mathrm{,0}.0)`"