4. B modeling#
4.1. Characteristics of modeling#
Dynamic substructuring makes it possible to calculate the vibratory behavior of the 3 beams from the dynamic characteristics of a single beam. This is meshed into segments to which elements of type POU_D_E are assigned.
The structure is studied using the substructuring method with « Craig‑Bampton » interfaces (blocked interfaces).
The base of the first 15 eigenmodes of the complete structure is calculated by substructuring. Then the transitory problem, projected on this basis, is solved by the transient calculation operator by modal recombination.
4.2. Characteristics of the mesh#
Number of knots: 15
Number of meshes and types: 14 SEG2
4.3. Tested sizes and results#
Identification |
Reference |
Aster |
% difference |
Euler integration diagram |
|||
Left beam: Displacement (\(m\)) |
1.64 10—2 |
1.64 10—2 |
|
Speed (\({\mathrm{m.s}}^{-1}\)) |
2.54 10—2 |
2.54 10—2 |
|
Middle beam: Displacement (\(m\)) |
1.12 10—2 |
1.12 10—2 |
< 0.01% |
Speed (\({\mathrm{m.s}}^{-1}\)) |
4.43 10—2 |
4.43 10—2 |
|
Right Beam: Displacement (\(m\)) |
5.90 10—3 |
5.90 10—3 |
|
Speed (\({\mathrm{m.s}}^{-1}\)) |
1.05 10—1 |
1.05 10—1 |
|
Devogelaere integration diagram |
|||
Left beam: Displacement (\(m\)) |
1.64 10—2 |
1.64 10—2 |
|
Speed (\({\mathrm{m.s}}^{-1}\)) |
2.54 10—2 |
2.54 10—2 |
|
Middle beam: Displacement (\(m\)) |
1.12 10—2 |
1.12 10—2 |
< 0.01% |
Speed (\({\mathrm{m.s}}^{-1}\)) |
4.41 10—2 |
4.41 10—2 |
|
Right Beam: Displacement (\(m\)) |
5.89 10—3 |
5.89 10—3 |
|
Speed (\({\mathrm{m.s}}^{-1}\)) |
1.05 10—1 |
1.05 10—1 |
|
Integration diagram with adaptive time steps of order 2 |
|||
Left beam: Displacement (\(m\)) |
1.64 10—2 |
1.64 10—2 |
|
Speed (\({\mathrm{m.s}}^{-1}\)) |
2.55 10—2 |
2.55 10—2 |
|
Middle beam: Displacement (\(m\)) |
1.12 10—2 |
1.12 10—2 |
< 0.01% |
Speed (\({\mathrm{m.s}}^{-1}\)) |
4.41 10—2 |
4.41 10—2 |
|
Right Beam: Displacement (\(m\)) |
5.91 10—3 |
5.91 10—3 |
|
Speed (\({\mathrm{m.s}}^{-1}\)) |
1.05 10—1 |
1.05 10—1 |