2. Benchmark solution#
2.1. Calculation method used for the reference solution#
A semi-analytical solution involving error functions is available:
\(\mathit{erf}(x)\mathrm{=}\frac{2}{\sqrt{\pi }}{\mathrm{\int }}_{0}^{x}{e}^{\mathrm{-}{t}^{2}}\mathit{dt}\) and \(\mathrm{erfc}(x)=\frac{2}{\sqrt{\pi }}{\int }_{x}^{+\infty }{e}^{-{t}^{2}}\mathrm{dt}\)
This solution is valid for a semi-infinite medium, so it can only be used in a limited range of variation in the time variable.
Either
the position of the solid/liquid interface. Let’s say \({s}_{t}=\frac{L}{\sqrt{{t}_{\mathrm{total}}}}\) and \(\lambda =\frac{{s}_{t}}{2\sqrt{{d}_{s}}}\) where \({d}_{s}\) and \({d}_{l}\) designate the diffusivity of solid and liquid media \(({d}_{s}=\frac{{k}_{s}}{{c}_{s}},{d}_{l}=\frac{{k}_{l}}{{c}_{l}})\). The solution to the heat equation is of the form:
\({T}_{s}(x,t)={T}_{0}+\frac{{T}_{m}-{T}_{0}}{\mathrm{erf}(\lambda )}\mathrm{erf}(\frac{x}{2\sqrt{{d}_{s}t}})\) if \(x\le {x}_{t}\)
\({T}_{l}(x,t)={T}_{i}+\frac{{T}_{m}-{T}_{i}}{\mathrm{erfc}(\lambda \sqrt{\frac{{d}_{s}}{{d}_{l}}})}\mathrm{erfc}(\frac{x}{2\sqrt{{d}_{l}t}})\) if \(x\ge {x}_{t}\)
The data of \({t}_{\mathrm{total}}\) is enough to define the solution, so we set \({t}_{\mathrm{total}}=420.\)
2.2. Benchmark results#
TEMPS : Absciss |
0.5 |
1.0 |
1.0 |
1.5 |
2.5 |
2.5 |
3.0 |
.000 |
|||||||
.005 |
682.43 |
661.33 |
661.33 |
647.50 |
638.74 |
632.69 |
628.20 |
.010 |
726.05 |
705.75 |
705.75 |
692.06 |
682.43 |
675.24 |
669.63 |
.015 |
738.11 |
728.70 |
728.70 |
718.44 |
709.60 |
702.23 |
696.06 |
.020 |
739.86 |
737.22 |
737.22 |
731.99 |
726.05 |
720.27 |
714.94 |
.025 |
739.50 |
737.56 |
737.56 |
734.47 |
730.81 |
727.00 |
|
.030 |
739.93 |
739.39 |
739.39 |
738.11 |
736.20 |
733.88 |
|
.035 |
739.99 |
739.88 |
739.88 |
739.45 |
738.61 |
737.40 |
|
.040 |
739.98 |
739.86 |
739.86 |
739.55 |
739.00 |
||
.045 |
739.97 |
739.87 |
739.65 |
||||
.050 |
739.97 |
739.89 |
|||||
.055 |
739.97 |
||||||
.060 |
|||||||
.065 |
|||||||
.070 |
|||||||
.075 |
|||||||
.080 |
|||||||
.085 |
|||||||
.090 |
|||||||
.095 |
|||||||
.100 |
TEMPS : Absciss |
3.5 |
4.0 |
4.0 |
5.0 |
5.5 |
5.5 |
6.0 |
.000 |
|||||||
.005 |
624.68 |
621.84 |
621.84 |
619.48 |
617.48 |
615.25 |
614.25 |
.010 |
665.09 |
661.33 |
661.33 |
657.43 |
653.65 |
650.37 |
647.49 |
.015 |
690.83 |
686.33 |
686.33 |
682.43 |
678.99 |
675.95 |
673.22 |
.020 |
710.11 |
705.75 |
705.75 |
701.81 |
698.25 |
709.92 |
692.06 |
.025 |
723.23 |
719.60 |
719.60 |
716.17 |
712.95 |
720.89 |
707.09 |
.030 |
731.34 |
728.70 |
728.70 |
726.05 |
723.43 |
728.48 |
718.44 |
.035 |
735.89 |
734.18 |
734.18 |
732.34 |
730.43 |
733.42 |
726.53 |
.040 |
738.21 |
737.22 |
737.22 |
736.07 |
734.79 |
736.44 |
731.99 |
.045 |
739.29 |
738.77 |
738.77 |
738.11 |
737.33 |
738.18 |
735.47 |
.050 |
739.74 |
739.50 |
739.50 |
739.15 |
738.71 |
739.12 |
737.56 |
.055 |
739.91 |
739.81 |
739.81 |
739.65 |
739.42 |
739.60 |
738.75 |
.060 |
739.97 |
739.93 |
739.93 |
739.86 |
739.75 |
739.83 |
739.39 |
.065 |
739.99 |
739.98 |
739.98 |
739.95 |
739.90 |
739.93 |
739.72 |
.070 |
739.99 |
739.98 |
739.98 |
739.96 |
739.97 |
739.88 |
|
.075 |
739.99 |
739.99 |
739.95 |
||||
.080 |
739.98 |
||||||
.085 |
739.99 |
||||||
.090 |
|||||||
.095 |
|||||||
.100 |
(In \(°C\), according to the abscissa in meters and the time in seconds).
Note:
We limit ourselves to variations during the first 6 seconds, beyond 10 seconds the limit condition at the end \(x=1\) is no longer assured.
2.3. Uncertainty about the solution#
Unknown, due to evaluation of error functions.
2.4. Bibliographical references#
Mr. Necati Özisik - Heat Conduction - Chapter 10: Phase-change problems example 10-3 - John Wiley & Sons.