2. Benchmark solution#

2.1. Calculation method used for the reference solution#

A semi-analytical solution involving error functions is available:

\(\mathit{erf}(x)\mathrm{=}\frac{2}{\sqrt{\pi }}{\mathrm{\int }}_{0}^{x}{e}^{\mathrm{-}{t}^{2}}\mathit{dt}\) and \(\mathrm{erfc}(x)=\frac{2}{\sqrt{\pi }}{\int }_{x}^{+\infty }{e}^{-{t}^{2}}\mathrm{dt}\)

This solution is valid for a semi-infinite medium, so it can only be used in a limited range of variation in the time variable.

Either

_images/Object_5.svg

the position of the solid/liquid interface. Let’s say \({s}_{t}=\frac{L}{\sqrt{{t}_{\mathrm{total}}}}\) and \(\lambda =\frac{{s}_{t}}{2\sqrt{{d}_{s}}}\) where \({d}_{s}\) and \({d}_{l}\) designate the diffusivity of solid and liquid media \(({d}_{s}=\frac{{k}_{s}}{{c}_{s}},{d}_{l}=\frac{{k}_{l}}{{c}_{l}})\). The solution to the heat equation is of the form:

\({T}_{s}(x,t)={T}_{0}+\frac{{T}_{m}-{T}_{0}}{\mathrm{erf}(\lambda )}\mathrm{erf}(\frac{x}{2\sqrt{{d}_{s}t}})\) if \(x\le {x}_{t}\)

\({T}_{l}(x,t)={T}_{i}+\frac{{T}_{m}-{T}_{i}}{\mathrm{erfc}(\lambda \sqrt{\frac{{d}_{s}}{{d}_{l}}})}\mathrm{erfc}(\frac{x}{2\sqrt{{d}_{l}t}})\) if \(x\ge {x}_{t}\)

The data of \({t}_{\mathrm{total}}\) is enough to define the solution, so we set \({t}_{\mathrm{total}}=420.\)

2.2. Benchmark results#

TEMPS : Absciss

0.5

1.0

1.0

1.5

2.5

2.5

3.0

.000

.005

682.43

661.33

661.33

647.50

638.74

632.69

628.20

.010

726.05

705.75

705.75

692.06

682.43

675.24

669.63

.015

738.11

728.70

728.70

718.44

709.60

702.23

696.06

.020

739.86

737.22

737.22

731.99

726.05

720.27

714.94

.025

739.50

737.56

737.56

734.47

730.81

727.00

.030

739.93

739.39

739.39

738.11

736.20

733.88

.035

739.99

739.88

739.88

739.45

738.61

737.40

.040

739.98

739.86

739.86

739.55

739.00

.045

739.97

739.87

739.65

.050

739.97

739.89

.055

739.97

.060

.065

.070

.075

.080

.085

.090

.095

.100

TEMPS : Absciss

3.5

4.0

4.0

5.0

5.5

5.5

6.0

.000

.005

624.68

621.84

621.84

619.48

617.48

615.25

614.25

.010

665.09

661.33

661.33

657.43

653.65

650.37

647.49

.015

690.83

686.33

686.33

682.43

678.99

675.95

673.22

.020

710.11

705.75

705.75

701.81

698.25

709.92

692.06

.025

723.23

719.60

719.60

716.17

712.95

720.89

707.09

.030

731.34

728.70

728.70

726.05

723.43

728.48

718.44

.035

735.89

734.18

734.18

732.34

730.43

733.42

726.53

.040

738.21

737.22

737.22

736.07

734.79

736.44

731.99

.045

739.29

738.77

738.77

738.11

737.33

738.18

735.47

.050

739.74

739.50

739.50

739.15

738.71

739.12

737.56

.055

739.91

739.81

739.81

739.65

739.42

739.60

738.75

.060

739.97

739.93

739.93

739.86

739.75

739.83

739.39

.065

739.99

739.98

739.98

739.95

739.90

739.93

739.72

.070

739.99

739.98

739.98

739.96

739.97

739.88

.075

739.99

739.99

739.95

.080

739.98

.085

739.99

.090

.095

.100

(In \(°C\), according to the abscissa in meters and the time in seconds).

Note:

We limit ourselves to variations during the first 6 seconds, beyond 10 seconds the limit condition at the end \(x=1\) is no longer assured.

2.3. Uncertainty about the solution#

Unknown, due to evaluation of error functions.

2.4. Bibliographical references#

  • Mr. Necati Özisik - Heat Conduction - Chapter 10: Phase-change problems example 10-3 - John Wiley & Sons.