2. Benchmark solution#
2.1. Calculation method used for the reference solution#
\(T(x,y)=\frac{4{T}_{P}}{\pi }\frac{\sum _{n=0}^{\infty }{e}^{[-(\mathrm{2n}+1)\pi y/l]}}{\mathrm{2n}+1}\mathrm{.}\mathrm{sin}\left[\frac{(\mathrm{2n}+1)\pi x}{l}\right]\)
where |
\(x\): |
abscissa |
\(y\): |
ordered |
|
\({T}_{p}\): |
temperature imposed on the side \([\mathrm{AB}]\) |
|
\(n=\) |
|
Reference values are obtained with \(n=1000\)
2.2. Benchmark results#
Temperature at points \(E,F,G,H,I,J,K\)
2.3. Uncertainty about the solution#
Analytical solution.
2.4. References#
J.R. Welty, C.E. Wicks, R.E. Wilson, R.E. Wilson, « Fundamentals of Momentum Heat and Mass Transfer », third edition, John Wiley & Sons, 1983.