2. Benchmark solution#

2.1. Calculation method used for the reference solution#

\(T(x,y)=\frac{4{T}_{P}}{\pi }\frac{\sum _{n=0}^{\infty }{e}^{[-(\mathrm{2n}+1)\pi y/l]}}{\mathrm{2n}+1}\mathrm{.}\mathrm{sin}\left[\frac{(\mathrm{2n}+1)\pi x}{l}\right]\)

where

\(x\):

abscissa

\(y\):

ordered

\({T}_{p}\):

temperature imposed on the side \([\mathrm{AB}]\)

\(n=\)

\(\mathrm{0,1}\mathrm{,2}\mathrm{,3},\dots\)

Reference values are obtained with \(n=1000\)

2.2. Benchmark results#

Temperature at points \(E,F,G,H,I,J,K\)

2.3. Uncertainty about the solution#

Analytical solution.

2.4. References#

  1. J.R. Welty, C.E. Wicks, R.E. Wilson, R.E. Wilson, « Fundamentals of Momentum Heat and Mass Transfer », third edition, John Wiley & Sons, 1983.