4. B modeling#

4.1. Characteristics of modeling#

AXIS_FOURIER (QUAD8)

_images/1000093C00001EE700000C671214E2CB2F4B2E74.svg

The mesh description axes are \(x(r)\) and \(y(z)\).

Fashion - Fourier: 2 \(T(A)=0.\)

No source term because \({S}^{l}(r,z)=0.\) for \(l=2\)

\([\mathrm{BC}]\):

\(\phi =2.\)

\([\mathrm{CD}]\):

\(h=2.\) \({T}_{\mathrm{ext}}=2.\)

4.2. Characteristics of the mesh#

Number of knots: 13.

Number of meshes and types: 2 QUAD8

4.3. notes#

Since the Fourier mode number does not affect the load, the MODE_FOURIER keyword is not required in the CALC_VECT_ELEM command.

4.4. Tested values#

Identification

Reference

\(T(B)\)

\(T(C)\)

\(T(D)\)

\(T(F)\)

0.25

\(T(G)\)

0.25

\({\phi }_{r}(B)\)

—2.

\({\phi }_{r}(C)\)

—2.

\({\phi }_{r}(D)\)

—2.

\({\phi }_{r}(F)\)

—1.

\({\phi }_{r}(G)\)

—1.

\({\phi }_{\theta }(B)\)

\({\phi }_{\theta }(C)\)

\({\phi }_{\theta }(D)\)

\({\phi }_{\theta }(F)\)

\({\phi }_{\theta }(G)\)

\({\phi }_{z}(B)\)

\({\phi }_{z}(C)\)

\({\phi }_{z}(D)\)

\({\phi }_{z}(F)\)

\({\phi }_{z}(G)\)

4.5. notes#

The analytical solution has been found exactly.