3. Modeling A#

3.1. Characteristics of modeling#

3D (HEXA8)

_images/Object_3.svg

3.2. Characteristics of the mesh#

Number of knots:

343

Number of meshes and types:

216 HEXA8 (and 216 QUAD8)

3.3. notes#

Volume heat \(\rho {C}_{P}\) is not a step in this test, but must be declared for*Code_Aster*. We take \(\rho {C}_{P}=1.0J/{m}^{\mathrm{3 }}°C\).

3.4. Tested values#

Identification

Reference

Point

Knot

\(T(°C)\)

\(O\)

\(\mathit{N169}\)

22.5

\(A\)

\(\mathit{N5}\)

35.0

\(B\)

\(\mathit{N301}\)

26.0

\(C\)

\(\mathit{N337}\)

10.0

\(D\)

\(\mathit{N49}\)

19.0

\(E\)

\(\mathit{N151}\)

30.5

\(F\)

\(\mathit{N316}\)

18.0

\(G\)

\(\mathit{N196}\)

14.5

\(H\)

\(\mathit{N24}\)

27.0

\(I\)

\(\mathit{N1}\)

29.0

\(J\)

\(\mathit{N298}\)

20.0

\(K\)

\(\mathit{N340}\)

4.0

\(L\)

\(\mathit{N44}\)

13.0

\(M\)

\(\mathit{N172}\)

16.5

\(N\)

\(\mathit{N2}\)

41.0

\(P\)

\(\mathit{N297}\)

32.0

\(Q\)

\(\mathit{N338}\)

16.0

\(R\)

\(\mathit{N43}\)

25.0

\(S\)

\(\mathit{N173}\)

28.5

Point

Mesh

Knot

\(\phi (W/{m}^{2})\)

\({\phi }_{x}\) \(K\)

\(\mathit{M211}\)

\(\mathit{N340}\)

45.0

\({\phi }_{x}\) \(F\)

\(\mathit{M201}\)

\(\mathit{N316}\)

45.0

\({\phi }_{x}\) \(O\)

\(\mathit{M129}\)

\(\mathit{N169}\)

45.0

\({\phi }_{y}\) \(K\)

\(\mathit{M211}\)

\(\mathit{N340}\)

60.0

\({\phi }_{y}\) \(F\)

\(\mathit{M201}\)

\(\mathit{N316}\)

60.0

\({\phi }_{y}\) \(O\)

\(\mathit{M129}\)

\(\mathit{N169}\)

60.0

\({\phi }_{z}\) \(K\)

\(\mathit{M211}\)

\(\mathit{N340}\)

30.0

\({\phi }_{z}\) \(F\)

\(\mathit{M201}\)

\(\mathit{N316}\)

30.0

\({\phi }_{z}\) \(O\)

\(\mathit{M129}\)

\(\mathit{N169}\)

30.0

Face

Resulting normal flow \({\int }_{\mathit{face}}\varphi \mathrm{.}n\mathit{dS}\) ( \(W\) )

\(y=0.1\)

-60.0

Thermal energy field tests ETHE_ELEM :

Isotropic material

Mesh

Reference value

Precision (in%)

Reference

\(\mathit{M109}\)

\(-\mathrm{170,1559513297}\)

\(\mathrm{0,1}\)

AUTRE_ASTER

Orthotropic material

Mesh

Reference value

Precision (in%)

Reference

\(\mathit{M109}\)

\(-\mathrm{332,36296035464}\)

\(\mathrm{1,0E-04}\)

NON_REGRESSION