1. Reference problem#
1.1. Geometry#
In coordinate system \(({X}_{\mathrm{0,}}{Y}_{\mathrm{0,}}{Z}_{0})\), the coordinates of the points are:
\(C(0.03;\mathrm{0 };0)\) |
|
|
\(F(\mathrm{0 };0.04;0)\) |
|
|
\(G(0.035;0.035;0)\) |
\(\mathrm{FK}=\mathrm{CH}=\mathrm{DI}=\mathrm{EJ}=0.05\mathrm{.}{Z}_{0}\)
\((\mathit{CD},{X}_{1})\mathrm{=}\frac{\pi }{4}\mathit{rad}{Z}_{0}\text{//}{Z}_{1}\)
1.2. Material properties#
Anisotropic material, preferred direction along the axes of the \(({X}_{\mathrm{1,}}{Y}_{\mathrm{1,}}{Z}_{1})\) coordinate system:
\(\begin{array}{ccc}{\lambda }_{X}=1W/m°C& {\lambda }_{Y}=0.5W/m°C& {\lambda }_{L}=2W/m°C\\ \rho {C}_{P}=2J/{m}^{3}°C& & \end{array}\)
1.3. Boundary conditions and loads#
face \(\mathrm{FEJK}\): Flow out of \(\mathrm{400 }W/{m}^{2}\).
face \(\mathrm{CDIH}\): Incoming flow from \(\mathrm{400 }W/{m}^{2}\).
face \(\mathrm{EDIJ}\): Flow out of \(\mathrm{1200 }W/\mathrm{m2}\).
face \(\mathrm{FCHK}\): Imposed temperature \(100°C\).
Other faces: Neumann condition.
1.4. Initial conditions#
To do this stationary calculation, a transient calculation is made for which the boundary conditions are constant over time. This makes it possible to test the elementary calculations of mass and stiffness occurring in the first member as well as the second member.