2. Benchmark solution#

2.1. Calculation method#

2.1.1. Static#

Travel in \(B\)

  • Single pull \({u}_{x}\mathrm{=}\frac{{F}_{x}L}{ES}\)

  • Pure flex \({u}_{z}\mathrm{=}\mathrm{-}\frac{{M}_{y}{L}^{2}}{2E{I}_{y}}\) \({\theta }_{y}\mathrm{=}\frac{{M}_{y}L}{E{I}_{y}}\)

  • Pure flex \({u}_{y}\mathrm{=}\frac{{M}_{z}{L}^{2}}{2E{I}_{z}}\) \({\theta }_{z}\mathrm{=}\frac{{M}_{z}L}{E{I}_{z}}\)

Maximum stress in \(A\)

  • Single pull \({\sigma }_{x}\mathrm{=}\frac{{F}_{x}}{S}\)

  • Pure flex \({\sigma }_{x}\mathrm{=}\mathrm{-}\frac{{M}_{y}}{\frac{2{I}_{y}}{h}}\)

  • Pure flex \({\sigma }_{x}\mathrm{=}\mathrm{-}\frac{{M}_{z}}{\frac{{\mathrm{2I}}_{z}}{b}}\)

2.1.2. Natural frequencies in bending#

Fashion 1: \({f}_{1}\mathrm{=}\frac{3.516}{2{L}^{2}\pi }\sqrt{\frac{\mathit{EI}}{\rho S}}\)

Mode 2: \({f}_{2}\mathrm{=}\frac{22.0345}{2{L}^{2}\pi }\sqrt{\frac{\mathit{EI}}{\rho S}}\)

2.2. Reference quantities and results#

2.2.1. Static#

  • Travel \((m)\)

Dot

\(\mathit{DX}\)

\(\mathit{DY}\)

\(\mathit{DZ}\)

\(B\)

\(8.3333\mathrm{\times }{10}^{\mathrm{-}5}\)

\(1.6667\mathrm{\times }{10}^{\mathrm{-}4}\)

\(\mathrm{-}2.5\mathrm{\times }{10}^{\mathrm{-}4}\)

  • Constraints \((N\mathrm{/}{m}^{2})\)

Point

\(\mathit{SIXX}\)

\(\mathit{SIYY}\)

\(\mathit{SIZZ}\)

\(\mathit{SIXY}\)

\(\mathit{SIXZ}\)

\(\mathit{SIYZ}\)

\(\mathit{A1}(5.0\mathrm{,1}.5,\mathrm{-}1.0)\)

\(\mathrm{-}0.3333\)

\(0.\)

\(0.\)

\(0.\)

\(0.\)

\(0.\)

\(\mathit{A2}(5.0\mathrm{,1}.5\mathrm{,1}.0)\)

\(1.6667\)

\(0.\)

\(0.\)

\(0.\)

\(0.\)

\(0.\)

2.2.2. Natural frequencies in bending#

Mode

Frequency \(\mathit{Hz}\)

\(1\)

\(0.014449\)

\(2\)

\(0.090549\)

2.3. Uncertainties about the solution#

Analytical solution.