2. Benchmark solution#
2.1. Calculation method#
2.1.1. Static#
Travel in \(B\)
Single pull \({u}_{x}\mathrm{=}\frac{{F}_{x}L}{ES}\)
Pure flex \({u}_{z}\mathrm{=}\mathrm{-}\frac{{M}_{y}{L}^{2}}{2E{I}_{y}}\) \({\theta }_{y}\mathrm{=}\frac{{M}_{y}L}{E{I}_{y}}\)
Pure flex \({u}_{y}\mathrm{=}\frac{{M}_{z}{L}^{2}}{2E{I}_{z}}\) \({\theta }_{z}\mathrm{=}\frac{{M}_{z}L}{E{I}_{z}}\)
Maximum stress in \(A\)
Single pull \({\sigma }_{x}\mathrm{=}\frac{{F}_{x}}{S}\)
Pure flex \({\sigma }_{x}\mathrm{=}\mathrm{-}\frac{{M}_{y}}{\frac{2{I}_{y}}{h}}\)
Pure flex \({\sigma }_{x}\mathrm{=}\mathrm{-}\frac{{M}_{z}}{\frac{{\mathrm{2I}}_{z}}{b}}\)
2.1.2. Natural frequencies in bending#
Fashion 1: \({f}_{1}\mathrm{=}\frac{3.516}{2{L}^{2}\pi }\sqrt{\frac{\mathit{EI}}{\rho S}}\)
Mode 2: \({f}_{2}\mathrm{=}\frac{22.0345}{2{L}^{2}\pi }\sqrt{\frac{\mathit{EI}}{\rho S}}\)
2.2. Reference quantities and results#
2.2.1. Static#
Travel \((m)\)
Dot |
\(\mathit{DX}\) |
|
|
\(B\) |
|
|
|
Constraints \((N\mathrm{/}{m}^{2})\)
Point |
\(\mathit{SIXX}\) |
|
|
|
|
|
||
\(\mathit{A1}(5.0\mathrm{,1}.5,\mathrm{-}1.0)\) |
|
|
|
|
|
|
||
\(\mathit{A2}(5.0\mathrm{,1}.5\mathrm{,1}.0)\) |
|
|
|
|
|
|
2.2.2. Natural frequencies in bending#
Mode |
Frequency \(\mathit{Hz}\) |
\(1\) |
|
\(2\) |
|
2.3. Uncertainties about the solution#
Analytical solution.