1. Reference problem#
1.1. Geometry A#
The geometry is along the axis:math: X.
The coordinates of the nodes, in the global coordinate system:
Node |
X |
Y |
Z |
A |
\(0.0\) |
\(0.0\) |
\(0.0\) |
B |
\(L\) |
\(0.0\) |
\(0.0\) |
C |
\(L.cos(\beta).cos(\alpha)\) |
\(L.cos(\beta).sin(\alpha)\) |
\(L.sin(\beta)\) |
The modeling consists of:
« POUTA »: it is a « SEG2 » between the nodes \(A\) and \(B\) with a « POU_D_E » pattern.
« POUTB »: it is a « SEG2 » between the nodes \(A\) and \(C\) with a « POU_D_E » pattern.
« DISCA »: it is a « SEG2 » between the nodes \(A\) and \(B\) with a « DIS_TR » pattern.
« DISCB »: it is a « SEG2 » between the nodes \(A\) and \(C\) with a « DIS_TR » pattern.
1.2. Loads#
1.2.1. Boundary conditions#
The node \(A\) is embedded and on the nodes \(B\) and \(C\) an effort is imposed along the axis of the element.