3. Modeling A#
3.1. Characteristics of modeling#
The modeling consists of:
« POUTA »: a « SEG2 » between nodes \(A\) and \(B\) with a « POU_D_E » pattern.
« POUTB »: a « SEG2 » between nodes \(A\) and \(C\) with a « POU_D_E » pattern.
« DISCA »: a « SEG2 » between nodes \(A\) and \(B\) with a « DIS_TR » pattern.
« DISCB »: a « SEG2 » between nodes \(A\) and \(C\) with a « DIS_TR » pattern.
Node \(A\) is embedded.
For elements in the \(AB\) direction, the effort at node \(B\) in the global coordinate system: \(Fb_x = F\)
For elements in the \(AC\) direction, the effort at node \(C\) in the global coordinate system:
\(\left\{ \begin{array}{l}Fc_x = F \cos(\beta)\cos(\alpha)\\Fc_y = F \cos(\beta)\sin(\alpha)\\Fc_z = F \sin(\beta)\end{array}\right.\)
The temperature load is a field at the nodes:
Instants |
Temperature [°C] |
0 |
\(T_0 = T_{ref} = 20.0°C\) |
1 |
\(T_1 = 50°C\) |
2 |
\(T_2 = 75°C\) |
3 |
\(T_3 = 100°C\) |
3.2. Characteristics of the mesh#
The mesh consists of a single « SEG2 » mesh per element.
3.3. Tested sizes and results#
The theoretical solutions are written, in the command file, according to the parameters:
linked to the mesh: \(L, \alpha, \beta\)
linked to the geometry of the beams: \(H_y, H_z\)
linked to the characteristics of discretes: \(K_x\)
related to the material: \(E, \alpha_{th}\)
The sizes tested:
at nodes \(B\) and \(C\): the movements, field « DEPL ».
at node \(A\): nodal reactions, field « REAC_NODA ».
on beams and discretes: internal forces, field « EFGE_ELNO ».