3. Modeling A#
3.1. Characteristics of modeling#
3D elements (PENTA15 + HEXA20)

Modeling:
1/4 of the cylinder according to the circumference
2 zones: |
zone 1 = lower part |
\((0\le z\le L/2)\) |
zone 2 = upper part |
\((L/2\le Z\le L)\) |
Cutting:
20 elements depending on the length
16 elements depending on the circumference
2 elements in the thickness
Coordinates of points \((r,\theta ,z)\)
A |
G |
B |
B |
E |
G1 |
F |
A2 A’2 |
H H” |
B2 B’2 |
E2 E’2 |
H1 H’1 |
F2 F’2 |
A3 |
I |
B3 |
B3 |
E3 |
I1 |
F3 |
|||||||||||||
\(r\) |
Ri |
R |
R |
Re |
Ri |
Ri |
R |
R |
R |
R |
R |
Re |
Ri |
Ri |
Ri |
Ri |
Ri |
R |
R |
Ri |
R |
R |
Ri |
Ri |
Ri |
Ri |
R |
Ri |
Ri |
Ri |
Ri |
Ri |
\(\theta\) |
0 |
.0. |
||||||||||||||||||||||||||||||
\(z\) |
L/2 |
L/2 |
L/2 |
L/2 |
L/2 |
L/2 |
L/2 |
L |
L |
L |
L |
L |
L |
\(\mathrm{Ri}\) = inner radius
\(\text{Re}\) = outer radius
The \(\mathrm{A2},H,\mathrm{B2},\mathrm{E2},\mathrm{H2},\mathrm{F2}\) points are in section \(z=L/2\) of zone 1
Points \(A’\mathrm{2,}H’,B’\mathrm{2,}E’\mathrm{2,}H’\mathrm{2,}F’2\) are the opposite sides in zone 2
Boundary conditions:
Support conditions \(w=0\) at the base (section \(z=0.\)) introduced by the keyword LIAISON_OBLIQUE
Symmetry conditions \(v=0.\) on the \(\mathrm{AB}\) side introduced by the LIAISON_OBLIQUE keyword
Symmetry conditions \(u=0.\) on the \(\mathrm{EF}\) side introduced by the LIAISON_OBLIQUE keyword
Identification of the nodes common to the 2 zones (section \(z=L/2\)) by the LIAISON_GROUP keyword.
Charging:
Surface load \(p=q/h=500000N/\mathrm{m2}\), along the axis, or in global coordinate system:
\(\mathrm{Fx}=0.\)
\(\mathrm{Fy}=p/2\)
\(\mathrm{Fz}=p\frac{\sqrt{3}}{2}\)
Node name:
3.2. Characteristics of the mesh#
Number of knots: 4298
Number of meshes and types: 160 HEXA20, 320 PENTA15
3.3. Tested values#
\(U,V,W\) displacement values read from file
Location |
Value type |
Reference |
Point \(G\) |
|
—7.143 x 10—7 |
\(V(m)\) |
||
\(W(m)\) |
||
Point \(H,H’\) |
|
—7.143 x 10—7 |
Point \(I\) |
|
—7.143 x 10—7 |
Point \(\mathrm{G1}\) |
|
|
Points \(\mathrm{H1},H’1\) |
|
Values of \(u,v,{u}_{r}\) movements in local coordinate system calculated from \(U,V,W\)
Location |
Value type |
Reference |
Point \(G\) |
|
—7.143 x 10—7 |
\(v(m)\) |
||
Point \(H,H’\) |
|
—7.143 x 10—7 |
\(v(m)\) |
||
Point \(I\) |
|
—7.143 x 10—7 |
\(v(m)\) |
||
Point \(\mathrm{A2},A’2\) Points \(\mathrm{B2},B’2\) |
|
|
Point \(\mathrm{G1}\) |
|
|
\({u}_{r}(m)\) |
—7.143 x 10—7 |
|
Points \(\mathrm{H1},H’1\) |
|
|
\({u}_{r}(m)\) |
—7.143 x 10—7 |
|
Point \(\mathrm{I1}\) |
|
|
\({u}_{r}(m)\) |
—7.143 x 10—7 |
|
Points \(\mathrm{E2},E’2\) |
|
|
Points \(\mathrm{F2},F’2\) |
|
|
Points \(A,B,G\) \(\mathrm{A2},\mathrm{B2},H\) \(A’\mathrm{2,}B’\mathrm{2,}H’\) \(\mathrm{A3},\mathrm{B3},I\) |
|
1.25 x 105 |
Points \(A,B,G\) \(\mathrm{A2},\mathrm{B2},H\) \(A’\mathrm{2,}B’\mathrm{2,}H’\) \(\mathrm{A3},\mathrm{B3},I\) |
|
3.75 x 105 |
3.4. notes#
Radial displacement \(\mathrm{ur}\) is obtained with good precision.
The symmetry conditions on face \(\mathrm{AB}\) (\(v=0\) locally, i.e. \(\frac{\sqrt{3}}{2}V–05W=0\)) are verified at the points \(\mathrm{A2},A’\mathrm{2,}G,\mathrm{B2},B’\mathrm{2,}H,H’,I\) considered.
Likewise, the symmetry conditions on face \(\mathrm{EF}\) (\(u=U=0\)) are verified at the envisaged points \(\mathrm{E2},E’\mathrm{2,}\mathrm{F2},F’\mathrm{2,}\mathrm{G1},\mathrm{H1},H’\mathrm{1,}\mathrm{I1}\).
The LIAISON_OBLIQUE keyword is thus validated.
The identification of the nodes common to the 2 zones by the keyword LIAISON_GROUP is also validated: the movements \(U,V,W\) are identical to the points \(A’\mathrm{2,}B’\mathrm{2,}H’,E’\mathrm{2,}F’\mathrm{2,}H’1\) in comparison with the movements to the respective opposite sides \(\mathrm{A2},\mathrm{B2},H,\mathrm{E2},\mathrm{F2},\mathrm{H1}\).