1. Reference problem#

1.1. Material properties#

The material properties and the characteristics specific to the RCC -M calculation are as follows:

  1. Young’s modulus: \(E\mathrm{=}2.E+05\mathit{MPa}\);

  2. material constants for the calculation of \(\mathrm{Ke}\): \(n=0.2\), \(m=\mathrm{2 }\);

  3. Young’s modulus of reference: \({E}_{\mathit{REFE}}\mathrm{=}2.E+05\mathit{MPa}\);

  4. allowable stress: \(\mathit{Sm}=200\mathit{MPa}\).

The Wöhler curve is defined analytically: \({N}_{\mathrm{adm}}=\frac{{5.10}^{5}}{{S}_{\mathrm{alt}}}\)

1.2. Evolution of constraints#

The constraints on the analysis segment are not calculated but read directly from a table. The only non-zero component of the stress tensor is \({\mathrm{\sigma }}_{\mathit{yy}}\). Several situations are considered. These situations do not aim to represent a specific real transient, but to cover all possible constraints (constant, linear or non-linear evolution of the stress in thickness).

Instant

Thermal constraints of situations 1 and 2

Instant

Thermal constraints of situation 3

Abscissor

Abscissor

0

1

2

0

1

2

1

50

100

150

1, 5

50

100

150

2

0

50

-100

2, 5

0

50

-100

3

0

0

50

3, 5

0

0

50

4

0

0

0

Table 1.2-1: Definition of constraints \({\mathrm{\sigma }}_{\mathit{yy}}\) (in \(\mathit{MPa}\)) for the moments of situation 1 and situation 2 as a function of the curvilinear abscissa

In this example, moments and pressure are defined by two torsors and four unit tensors. Again, only the \({\mathrm{\sigma }}_{\mathit{yy}}\) constraint is non-zero in these tensors.

Unit tensor

\({\mathrm{\sigma }}_{\mathit{yy}}\)

Abscissor

0

1

2

\({\mathit{Mom}}_{X}\)

50

0

0

\({\mathit{Mom}}_{Y}\)

0

50

0

\({\mathit{Mom}}_{Z}\)

0

0

100

\(\mathit{Pres}\)

50

0

0

\({P}_{A}\)

\({P}_{B}\)

\({M}_{\mathit{xA}}\)

\({M}_{\mathit{yA}}\)

\({M}_{\mathit{zA}}\)

\({M}_{\mathit{xB}}\)

\({M}_{\mathit{yB}}\)

\({M}_{\mathit{zB}}\)

Situation 1

1

10

10

1

1

-1

-1.5

-10

1

0.1

Situation 2

1

10

10

1

1

-1

-1.5

-10

1

0.1

Situation 3

0.4

1

0.4

0.4

0

-0.6

1

-1

-1.5

Table 1.2-2: Definition of torsors on moments (in N.mm) and pressure (in MPa) for situations 1, 2 and 3