Reference problem ===================== Material properties ----------------------- The material properties and the characteristics specific to the RCC -M calculation are as follows: 1. Young's modulus: :math:`E\mathrm{=}2.E+05\mathit{MPa}`; 2. material constants for the calculation of :math:`\mathrm{Ke}`: :math:`n=0.2`, :math:`m=\mathrm{2 }`; 3. Young's modulus of reference: :math:`{E}_{\mathit{REFE}}\mathrm{=}2.E+05\mathit{MPa}`; 4. allowable stress: :math:`\mathit{Sm}=200\mathit{MPa}`. The Wöhler curve is defined analytically: :math:`{N}_{\mathrm{adm}}=\frac{{5.10}^{5}}{{S}_{\mathrm{alt}}}` Evolution of constraints ------------------------- The constraints on the analysis segment are not calculated but read directly from a table. The only non-zero component of the stress tensor is :math:`{\mathrm{\sigma }}_{\mathit{yy}}`. Several situations are considered. These situations do not aim to represent a specific real transient, but to cover all possible constraints (constant, linear or non-linear evolution of the stress in thickness). +-------+---------------------------------------------+---+----+-------+--------------------------------------+---+----+ |Instant|**Thermal constraints** of situations 1 and 2 |Instant|**Thermal constraints** of situation 3 | + +---------------------------------------------+---+----+ +--------------------------------------+---+----+ | |*Abscissor* | |*Abscissor* | + +---------------------------------------------+---+----+ +--------------------------------------+---+----+ | |0 |1 |2 | |0 |1 |2 | +-------+---------------------------------------------+---+----+-------+--------------------------------------+---+----+ |1 |50 |100|150 |1, 5 |50 |100|150 | +-------+---------------------------------------------+---+----+-------+--------------------------------------+---+----+ |2 |0 |50 |-100|2, 5 |0 |50 |-100| +-------+---------------------------------------------+---+----+-------+--------------------------------------+---+----+ |3 |0 |0 |50 |3, 5 |0 |0 |50 | +-------+---------------------------------------------+---+----+-------+--------------------------------------+---+----+ |4 |0 |0 |0 | | | | | +-------+---------------------------------------------+---+----+-------+--------------------------------------+---+----+ Table 1.2-1: Definition of constraints :math:`{\mathrm{\sigma }}_{\mathit{yy}}` (in :math:`\mathit{MPa}`) for the moments of situation 1 and situation 2 as a function of the curvilinear abscissa In this example, moments and pressure are defined by two torsors and four unit tensors. Again, only the :math:`{\mathrm{\sigma }}_{\mathit{yy}}` constraint is non-zero in these tensors. +--------------------------+----------------------------------------+--+---+ |Unit tensor |:math:`{\mathrm{\sigma }}_{\mathit{yy}}` | + +----------------------------------------+--+---+ | |*Abscissor* | + +----------------------------------------+--+---+ | |0 |1 |2 | +--------------------------+----------------------------------------+--+---+ |:math:`{\mathit{Mom}}_{X}`|50 |0 |0 | +--------------------------+----------------------------------------+--+---+ |:math:`{\mathit{Mom}}_{Y}`|0 |50|0 | +--------------------------+----------------------------------------+--+---+ |:math:`{\mathit{Mom}}_{Z}`|0 |0 |100| +--------------------------+----------------------------------------+--+---+ |:math:`\mathit{Pres}` |50 |0 |0 | +--------------------------+----------------------------------------+--+---+ .. csv-table:: "", ":math:`{P}_{A}` "," :math:`{P}_{B}` "," :math:`{M}_{\mathit{xA}}` "," "," :math:`{M}_{\mathit{yA}}` "," "," :math:`{M}_{\mathit{zA}}` "," :math:`{M}_{\mathit{xB}}` "," :math:`{M}_{\mathit{yB}}` "," :math:`{M}_{\mathit{zB}}`" "Situation 1", "1", "10", "10", "1", "1", "-1", "-1.5", "-10", "1", "0.1" "Situation 2", "1", "10", "10", "1", "1", "-1", "-1.5", "-10", "1", "0.1" "Situation 3", "0.4", "1", "0.4", "0.4", "0", "-0.6", "1", "-1", "-1.5" Table 1.2-2: Definition of torsors on moments (in N.mm) and pressure (in MPa) for situations 1, 2 and 3