1. Reference problem#

1.1. Material properties#

The material properties and the characteristics specific to the RCC -M calculation are as follows:

  1. Young’s modulus: \(E\mathrm{=}2.E+05\mathit{MPa}\);

  2. material constants for the calculation of \(\mathrm{Ke}\): \(n=0.2\), \(m=\mathrm{2 }\);

  3. Young’s modulus of reference: \({E}_{\mathit{REFE}}\mathrm{=}2.E+05\mathit{MPa}\);

  4. allowable stress: \(\mathit{Sm}=2000\mathit{MPa}\).

The Wöhler curve is defined analytically: \({N}_{\mathrm{adm}}=\frac{{5.10}^{5}}{{S}_{\mathrm{alt}}}\)

1.2. Evolution of constraints#

The constraints on the analysis segment are not calculated but read directly from a table. The only non-zero component of the stress tensor is \({\sigma }_{\mathrm{yy}}\). Two situations are considered. These situations do not aim to represent a specific real transient, but to cover all possible constraints (constant, linear or non-linear evolution of the stress in thickness).

Instant

Thermal constraints

Stress due to pressure

**Thermal stresses+pressure

Abscissor

Abscissor

Abscissor

0

1

2

0

1

2

0

1

2

1, 5

90

100

110

90

100

110

180

200

220

2, 5

0

100

0

0

100

0

0

200

0

3, 5

100

-50

-100

100

-50

-100

200

-100

-200

4, 5

0

0

0

0

0

0

0

0

0

Table 1.2-1 : Definition of constraints \({\mathrm{\sigma }}_{\mathit{yy}}\) (in \(\mathit{MPa}\)) for the moments of situation 1 as a function of the curvilinear abscissa

Instant

Thermal constraints

Stress due to pressure

**Thermal stresses+pressure

Abscissor

Abscissor

Abscissor

0

1

2

0

1

2

0

1

2

1

90

100

90

0

0

0

90

100

90

2

0

100

0

0

0

0

0

100

0

3

100

-50

-100

0

0

0

100

-50

-100

4

0

0

0

0

0

0

0

0

0

Table 1.2-2: Definition of the constraints \({\mathrm{\sigma }}_{\mathit{yy}}\) (in \(\mathit{MPa}\)) for the moments of situation 2 as a function of the curvilinear abscissa

In ZE200, the moments are defined according to two twists (in ze200a, the pressure also)

\({P}_{A}\)

\({P}_{B}\)

\({M}_{\mathit{xA}}\)

\({M}_{\mathit{yA}}\)

\({M}_{\mathit{zA}}\)

\({M}_{\mathit{xB}}\)

\({M}_{\mathit{yB}}\)

\({M}_{\mathit{zB}}\)

Situation 1

201

1

21

21

0

0

1

0

0

Situation 2

0

0

0

1

0

0

61

0

0

Table 1.2-3: Definition of torsors on moments (in N.mm) and pressure (in MPa) for situations 1 and 2

In ZE200, the characteristics of the pipe (thickness, radius, moment of inertia) are necessary to calculate the quantities, as are the stress indices. In this example, we select*arbitrarily select*

\(e=1\mathit{mm}\)

\(R=\mathrm{0,5}\mathit{mm}\)

\(I=1{m}^{4}\)

\({K}_{1}=1\) and \({C}_{1}=1\)

\({K}_{2}=1\) and \({C}_{2}=2\)

\({K}_{3}=1\) and \({C}_{3}=1\)

\({M}_{\mathit{xS}}\)

\({M}_{\mathit{yS}}\)

\({M}_{\mathit{zS}}\)

21

0

0

Table 1.2-4: Definition of torsors on moments (in N.mm) for the earthquake