Reference problem ===================== Material properties ----------------------- The material properties and the characteristics specific to the RCC -M calculation are as follows: 1. Young's modulus: :math:`E\mathrm{=}2.E+05\mathit{MPa}`; 2. material constants for the calculation of :math:`\mathrm{Ke}`: :math:`n=0.2`, :math:`m=\mathrm{2 }`; 3. Young's modulus of reference: :math:`{E}_{\mathit{REFE}}\mathrm{=}2.E+05\mathit{MPa}`; 4. allowable stress: :math:`\mathit{Sm}=2000\mathit{MPa}`. The Wöhler curve is defined analytically: :math:`{N}_{\mathrm{adm}}=\frac{{5.10}^{5}}{{S}_{\mathrm{alt}}}` Evolution of constraints ------------------------- The constraints on the analysis segment are not calculated but read directly from a table. The only non-zero component of the stress tensor is :math:`{\sigma }_{\mathrm{yy}}`. Two situations are considered. These situations do not aim to represent a specific real transient, but to cover all possible constraints (constant, linear or non-linear evolution of the stress in thickness). +-------+-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ |Instant|**Thermal constraints** |**Stress** due to pressure |**Thermal stresses+pressure | + +-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ | |*Abscissor* |*Abscissor* |*Abscissor* | + +-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ | |0 |1 |2 |0 |1 |2 |0 |1 |2 | +-------+-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ |1, 5 |90 |100|110 |90 |100|110 |180 |200 |220 | +-------+-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ |2, 5 |0 |100|0 |0 |100|0 |0 |200 |0 | +-------+-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ |3, 5 |100 |-50|-100|100 |-50|-100|200 |-100|-200| +-------+-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ |4, 5 |0 |0 |0 |0 |0 |0 |0 |0 |0 | +-------+-----------------------+---+----+--------------------------+---+----+---------------------------+----+----+ **Table** 1.2-1 **:** Definition of constraints :math:`{\mathrm{\sigma }}_{\mathit{yy}}` (in :math:`\mathit{MPa}`) for the moments of situation 1 as a function of the curvilinear abscissa +-------+-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ |Instant|**Thermal constraints** |**Stress** due to pressure |**Thermal stresses+pressure | + +-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ | |*Abscissor* |*Abscissor* |*Abscissor* | + +-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ | |0 |1 |2 |0 |1|2|0 |1 |2 | +-------+-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ |1 |90 |100|90 |0 |0|0|90 |100|90 | +-------+-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ |2 |0 |100|0 |0 |0|0|0 |100|0 | +-------+-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ |3 |100 |-50|-100|0 |0|0|100 |-50|-100| +-------+-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ |4 |0 |0 |0 |0 |0|0|0 |0 |0 | +-------+-----------------------+---+----+--------------------------+-+-+---------------------------+---+----+ Table 1.2-2: Definition of the constraints :math:`{\mathrm{\sigma }}_{\mathit{yy}}` (in :math:`\mathit{MPa}`) for the moments of situation 2 as a function of the curvilinear abscissa In ZE200, the moments are defined according to two twists (in ze200a, the pressure also) .. csv-table:: "", ":math:`{P}_{A}` "," :math:`{P}_{B}` "," :math:`{M}_{\mathit{xA}}` "," "," :math:`{M}_{\mathit{yA}}` "," "," :math:`{M}_{\mathit{zA}}` "," :math:`{M}_{\mathit{xB}}` "," :math:`{M}_{\mathit{yB}}` "," :math:`{M}_{\mathit{zB}}`" "Situation 1", "201", "1", "21", "21", "0", "0", "1", "0", "0" "Situation 2", "0", "0", "0", "1", "0", "0", "61", "0", "0" Table 1.2-3: Definition of torsors on moments (in N.mm) and pressure (in MPa) for situations 1 and 2 In ZE200, the characteristics of the pipe (thickness, radius, moment of inertia) are necessary to calculate the quantities, as are the stress indices. In this example, we select*arbitrarily select* :math:`e=1\mathit{mm}` :math:`R=\mathrm{0,5}\mathit{mm}` :math:`I=1{m}^{4}` :math:`{K}_{1}=1` and :math:`{C}_{1}=1` :math:`{K}_{2}=1` and :math:`{C}_{2}=2` :math:`{K}_{3}=1` and :math:`{C}_{3}=1` .. csv-table:: ":math:`{M}_{\mathit{xS}}` "," :math:`{M}_{\mathit{yS}}` "," :math:`{M}_{\mathit{zS}}`" "21", "0", "0" Table 1.2-4: Definition of torsors on moments (in N.mm) for the earthquake