3. Modeling A#

The crack bottom is closed. We calculate \(G\).

3.1. Characteristics of modeling#

_images/10000000000002EC00000242F33EBCD25DBBD74F.png

The advantage of this modeling is to represent the entire crack background, which is a closed curve, without taking advantage of the symmetries of the problem.

Only traction loading is taken into account.

3.2. Characteristics of the mesh#

Number of knots: 11114

Number of meshes and type: 2432 PENTA15

The middle nodes of the edges of the elements touching the bottom of the crack are moved to a quarter of these edges.

3.3. note#

The values of \(G\) are tested for \(\mathrm{\theta }\) fields defined as a function of radius (R_ INF and R_ SUP)

and the number of layers (NB_COUCHE_INFet NB_COUCHE_SUP).

The keyword SYME is used in the CALC_G operator to automatically multiply by two the energy restoration rate calculated on a single lip of the crack, when the FOND_FISS operand is absent. When FOND_FISS is present, symmetry information is retrieved directly from the fond_fiss concept created via DEFI_FOND_FISS.

The principle is the same for POST_K1_K2_K3. The indication of the symmetry induces the calculation of the stress intensity factors and the energy restoration rate G_ IRWIN by interpolation of the movements of a single lip of the crack. Moving the middle nodes of the edges of the elements touching the bottom of the crack to a quarter of these edges would improve the accuracy of the calculation.

3.4. Tested sizes and results#

Identification

Reference

Reference type

\(\text{\%}\) tolerance

G local Node \(N403\) - Discretization LINEAIRE, R_ INF and R_ SUP

11.586

ANALYTIQUE

3.0

G local Node \(N2862\) - Discretization LINEAIRE, R_ INF and R_ SUP

11.586

ANALYTIQUE

2.0

G local Node \(N375\) - Discretization LINEAIRE, R_ INF and R_ SUP

11.586

ANALYTIQUE

3.0

G local Node \(N292\) - Discretization LINEAIRE, R_ INF and R_ SUP

11.586

ANALYTIQUE

2,4

\(\mathit{max}(G\mathit{local})\) - Discretization LINEAIRE, R_ INF R_ SUP

11.59

ANALYTIQUE

2.5

\(\mathit{min}(G\mathit{local})\) - Discretization LINEAIRE, R_ INF R_ SUP

11.59

ANALYTIQUE

2.0

G local point \(1\) Discretization LINEAIRE/NB_POINT_FOND =33, R_ INF and R_ SUP

11.586

ANALYTIQUE

1.0

G local point \(13\) Discretization LINEAIRE/NB_POINT_FOND =33, R_ INF and R_ SUP

11.586

ANALYTIQUE

1.0

G local point \(21\) Discretization LINEAIRE/NB_POINT_FOND =33, R_ INF and R_ SUP

11.586

ANALYTIQUE

1.0

G local point \(33\) Discretization LINEAIRE/NB_POINT_FOND =33, R_ INF and R_ SUP

11.586

ANALYTIQUE

1.0

G local Node \(N403\) - Discretization LINEAIRE, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

3.0

G local Node \(N2862\) - Discretization LINEAIRE, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

2.0

G local Node \(N375\) - Discretization LINEAIRE, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

3.0

G local Node \(N292\) - Discretization LINEAIRE, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

2,4

\(\mathit{max}(G\mathit{local})\) - Discretization LINEAIRE, NB_COUCHE_INF and NB_COUCHE_SUP

11.59

ANALYTIQUE

2.5

\(\mathit{min}(G\mathit{local})\) - Discretization LINEAIRE, NB_COUCHE_INF and NB_COUCHE_SUP

11.59

ANALYTIQUE

2.0

G local point \(1\) Discretization LINEAIRE/NB_POINT_FOND =33/=33, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

1.0

G local point \(13\) Discretization LINEAIRE/NB_POINT_FOND =33/=33, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

1.0

G local point \(21\) Discretization LINEAIRE/NB_POINT_FOND =33/=33, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

1.0

G local point \(33\) Discretization LINEAIRE/NB_POINT_FOND =33/=33, NB_COUCHE_INF and NB_COUCHE_SUP

11.586

ANALYTIQUE

1.0