1. Reference problem#

1.1. Geometry#

_images/Object_1.svg

1.2. Material properties#

The material constituting the cylinder is homogenous orthotropic. The orthotropy axes correspond to the curvilinear directions \(x\) and \(y\).

\(\mathrm{[}{H}_{\mathit{membrane}}\mathrm{]}\mathrm{=}h\mathrm{[}H\mathrm{]}\); \(\mathrm{[}{H}_{\mathit{membrane}\mathrm{-}\mathit{flexion}}\mathrm{]}\mathrm{=}\mathrm{[}0\mathrm{]}\); \(\mathrm{[}{H}_{\mathit{flexion}}\mathrm{]}\mathrm{=}{h}^{3}\mathrm{[}H\mathrm{]}\mathrm{/}12\)

1.3. Boundary conditions and loads#

  • Boundary conditions: The ends of the cylinder rest on rigid diaphragms

  • A and B models: Force per unit length: \(q\mathrm{=}\mathrm{-}2357.143N\mathrm{/}m\)

  • C and D models: Force per unit length: \(q\mathrm{=}\mathrm{-}\mathrm{896.552.}N\mathrm{/}m\)

1.4. Initial conditions#

Not applicable