1. Reference problem#
1.1. Geometry#
1.2. Material properties#
The material constituting the cylinder is homogenous orthotropic. The orthotropy axes correspond to the curvilinear directions \(x\) and \(y\).
\(\mathrm{[}{H}_{\mathit{membrane}}\mathrm{]}\mathrm{=}h\mathrm{[}H\mathrm{]}\); \(\mathrm{[}{H}_{\mathit{membrane}\mathrm{-}\mathit{flexion}}\mathrm{]}\mathrm{=}\mathrm{[}0\mathrm{]}\); \(\mathrm{[}{H}_{\mathit{flexion}}\mathrm{]}\mathrm{=}{h}^{3}\mathrm{[}H\mathrm{]}\mathrm{/}12\)
1.3. Boundary conditions and loads#
Boundary conditions: The ends of the cylinder rest on rigid diaphragms
A and B models: Force per unit length: \(q\mathrm{=}\mathrm{-}2357.143N\mathrm{/}m\)
C and D models: Force per unit length: \(q\mathrm{=}\mathrm{-}\mathrm{896.552.}N\mathrm{/}m\)
1.4. Initial conditions#
Not applicable