2. Benchmark solution#

2.1. Calculation method#

In both modes of stress, the membrane is in a state of uniform stress. It is therefore possible to calculate analytically the solution of this problem in both cases.

  • Traction solicitation

In the case of a simple tensile load, it is simply shown that, in the global frame of reference:

\(\mathrm{\{}\begin{array}{c}{\varepsilon }_{\mathit{XX}}\mathrm{=}{F}_{X}\frac{{M}_{\mathit{LLLL}}}{({M}_{\mathit{TTTT}}{M}_{\mathit{LLLL}}\mathrm{-}{M}_{\mathit{LLTT}}^{2})}\\ {\varepsilon }_{\mathit{YY}}\mathrm{=}\mathrm{-}{F}_{X}\frac{{M}_{\mathit{LLTT}}}{({M}_{\mathit{TTTT}}{M}_{\mathit{LLLL}}\mathrm{-}{M}_{\mathit{LLTT}}^{2})}\\ {\varepsilon }_{\mathit{XY}}\mathrm{=}0\end{array}\)

  • Shear load

In the case of shear stress, it is shown that, in the global frame of reference:

\(\mathrm{\{}\begin{array}{c}{\varepsilon }_{\mathit{XX}}\mathrm{=}0\\ {\varepsilon }_{\mathit{YY}}\mathrm{=}0\\ {\varepsilon }_{\mathit{XY}}\mathrm{=}\frac{{\sigma }_{\mathit{XY}}}{{M}_{\mathit{LTLT}}}\end{array}\)

2.2. Reference quantities and results#

Displacement, stress, and deformation are tested at summit \(\mathit{POINT}\). The quantities tested are summarized in the table below, for the two modes of stress.

Size

Component

Simple Traction

Shear

Tolerance

Displacement

DX

3/8

3/8

1/2

1.E-6

DY

-1/8

1/2

1.E-6

Membrane deformations (local coordinate system)

EXX

-1/8

0

1.E-6

EYY

3/8

0

1.E-6

EXY

0

\(\sqrt{2}\mathrm{/}2\)

1.E-6

Membrane constraints (local coordinate system)

NXX

0

0

1.E-6

NYY

1

0

1.E-6

NXY

0

\(\sqrt{2}\)

1.E-6