1. Reference problem#

_images/Shape1.gif _images/Shape2.gif

1.1. Geometry#

_images/Shape3.gif

Dot

\(X(\mathit{mm})\)

\(Y(\mathit{mm})\)

\(Z(\mathit{mm})\)

\(A\)

0

0

0

\(B\)

750

0

10

\(C\)

750

200

10

\(D\)

0

200

0

\(F\)

0

0

0

20

\(I\)

0

200

20

The \(z\) dimension of the plate is defined by the following equation: \(z\mathrm{=}30\mathrm{sin}(2\pi x\mathrm{/}L)\mathrm{sin}(\pi y\mathrm{/}l)\)

1.2. Material properties#

The material has an isotropic elastic behavior:

  • Young’s module: \(E\mathrm{=}204\mathrm{000.MPa}\)

  • Poisson’s ratio: \(\nu \mathrm{=}0.3\)

1.3. Boundary conditions and loads#

Boundary conditions:

  • Embedding on the \(\mathit{GAUCHE}\) side

3D modeling, SHB: 3 cases of surface loads on the \(\mathit{DROITE}\) side:

  • \(\mathit{fx}\text{}\mathrm{=}\text{}0.5N\mathrm{/}\mathit{mm²}\)

  • \(\mathit{fy}\text{}\mathrm{=}\text{}0.5N\mathrm{/}\mathit{mm²}\)

  • \(\mathit{fz}\text{}\mathrm{=}\mathrm{-}0.5N\mathrm{/}\mathit{mm²}\)

Modeling COQUE_3D; 2 cases of linear loads on the \(\mathit{DROITE}\) side

  • \(\mathit{fx}\text{}\mathrm{=}\text{}10.N\mathrm{/}\mathit{mm}\)

  • \(\mathit{fz}\text{}\mathrm{=}\mathrm{-}10.N\mathrm{/}\mathit{mm}\)