Reference problem ===================== .. image:: images/Shape1.gif .. _RefSchema_Shape1.gif: .. image:: images/Shape2.gif .. _RefSchema_Shape2.gif: Geometry --------- .. image:: images/Shape3.gif .. _RefSchema_Shape3.gif: .. csv-table:: "Dot", ":math:`X(\mathit{mm})` "," :math:`Y(\mathit{mm})` "," :math:`Z(\mathit{mm})`" ":math:`A` ", "0", "0", "0" ":math:`B` ", "750", "0", "10" ":math:`C` ", "750", "200", "10" ":math:`D` ", "0", "200", "0" ":math:`F` ", "0", "0", "0", "20" ":math:`I` ", "0", "200", "20" The :math:`z` dimension of the plate is defined by the following equation: :math:`z\mathrm{=}30\mathrm{sin}(2\pi x\mathrm{/}L)\mathrm{sin}(\pi y\mathrm{/}l)` Material properties -------------------- The material has an isotropic elastic behavior: * Young's module: :math:`E\mathrm{=}204\mathrm{000.MPa}` * Poisson's ratio: :math:`\nu \mathrm{=}0.3` Boundary conditions and loads ------------------------------------- Boundary conditions: * Embedding on the :math:`\mathit{GAUCHE}` side 3D modeling, SHB: 3 cases of surface loads on the :math:`\mathit{DROITE}` side: * :math:`\mathit{fx}\text{}\mathrm{=}\text{}0.5N\mathrm{/}\mathit{mm²}` * :math:`\mathit{fy}\text{}\mathrm{=}\text{}0.5N\mathrm{/}\mathit{mm²}` * :math:`\mathit{fz}\text{}\mathrm{=}\mathrm{-}0.5N\mathrm{/}\mathit{mm²}` Modeling COQUE_3D; 2 cases of linear loads on the :math:`\mathit{DROITE}` side * :math:`\mathit{fx}\text{}\mathrm{=}\text{}10.N\mathrm{/}\mathit{mm}` * :math:`\mathit{fz}\text{}\mathrm{=}\mathrm{-}10.N\mathrm{/}\mathit{mm}`