1. Reference problem#

1.1. Geometry#

_images/1000020100000416000001D41A116EAD1F866743.png

Width \(a=10\mathit{mm}\), thickness \(h=\mathrm{1mm}\).

1.2. Material properties#

The properties of the material constituting each of the three layers of the plate are as follows:

Orthotropic material:

\({E}_{l}=25\mathrm{MPa}\)

\({E}_{t}=1\mathrm{MPa}\)

\({G}_{\text{lt}}={G}_{\text{lz}}=0.5\mathrm{MPa}\)

\({G}_{\mathrm{tz}}=0.2\mathrm{MPa}\)

\({\nu }_{\text{lt}}=0.25\)

Stacking:

  • orientation:

\([0/90/0]\)

  • thickness:

\([h/4/h/2/h/4]\)

1.3. Boundary conditions and loads#

The loads are applied in such a way as to obtain uniform stress states in the plate:

  • Load case 1: \(\mathrm{Mxx}=1\) in the plate

  • Embedding on \(\mathrm{AD}\)

  • Moment spread over \(\mathrm{BC}\): \(\mathrm{MX}=1\)

  • Load case 2: \(\mathrm{Myy}=1\) in the plate

  • Embedding on \(\mathrm{AB}\)

  • Moment spread over \(\mathrm{CD}\): \(\mathrm{MY}=1\)

  • Load case 3: \(\mathit{QY}=1\) in the plate

  • Embedding on \(\mathit{AB}\)

  • Effort spread over \(\mathit{CD}\): \(\mathit{FY}=-1\)

  • Load case 4: \(\mathit{QX}=1\) in the plate

  • Embedding on \(\mathit{AD}\)

  • Effort spread over \(\mathit{BC}\): \(\mathit{FY}=1\)