Reference problem ===================== Geometry --------- .. image:: images/1000020100000416000001D41A116EAD1F866743.png :width: 5.5634in :height: 2.5035in .. _RefImage_1000020100000416000001D41A116EAD1F866743.png: Width :math:`a=10\mathit{mm}`, thickness :math:`h=\mathrm{1mm}`. Material properties ---------------------- The properties of the material constituting each of the three layers of the plate are as follows: Orthotropic material: .. csv-table:: ":math:`{E}_{l}=25\mathrm{MPa}` "," :math:`{E}_{t}=1\mathrm{MPa}`" ":math:`{G}_{\text{lt}}={G}_{\text{lz}}=0.5\mathrm{MPa}` "," :math:`{G}_{\mathrm{tz}}=0.2\mathrm{MPa}`" ":math:`{\nu }_{\text{lt}}=0.25` ", "" Stacking: .. csv-table:: "* orientation:", ":math:`[0/90/0]`" "* thickness:", ":math:`[h/4/h/2/h/4]`" Boundary conditions and loads ------------------------------------- The loads are applied in such a way as to obtain uniform stress states in the plate: * Load case 1: :math:`\mathrm{Mxx}=1` in the plate * Embedding on :math:`\mathrm{AD}` * Moment spread over :math:`\mathrm{BC}`: :math:`\mathrm{MX}=1` * Load case 2: :math:`\mathrm{Myy}=1` in the plate * Embedding on :math:`\mathrm{AB}` * Moment spread over :math:`\mathrm{CD}`: :math:`\mathrm{MY}=1` * Load case 3: :math:`\mathit{QY}=1` in the plate * Embedding on :math:`\mathit{AB}` * Effort spread over :math:`\mathit{CD}`: :math:`\mathit{FY}=-1` * Load case 4: :math:`\mathit{QX}=1` in the plate * Embedding on :math:`\mathit{AD}` * Effort spread over :math:`\mathit{BC}`: :math:`\mathit{FY}=1`