2. Benchmark solution#
2.1. Calculation method#
The reference solution is a digital solution [1].
If \(a\mathrm{-}b\mathrm{\le }r<a+b\)
Displacement: \({\delta }_{r}\mathrm{=}\frac{\mathit{pb}}{\mathrm{2Eh}}(r\mathrm{-}\nu (r+a))\)
Constraints: \({\sigma }_{11}\mathrm{=}\frac{\mathit{pb}}{\mathrm{2h}}\mathrm{\times }\frac{r+a}{r}\) \({\sigma }_{22}\mathrm{=}\frac{\mathit{pb}}{\mathrm{2h}}\)
These formulas are only applicable to thin tori, such as \(\frac{b}{h}>10\) and with a radius of curvature such as \(r\mathrm{\times }\pi <100\sqrt{\frac{{I}_{x}}{A}}\) with \({I}_{x}\) =moment of inertia and \(A\) = area of the geometric cross section of the torus
2.2. Reference quantities and results#
Travel
Dot |
\(\mathit{DX}(m)\) |
\(r\mathrm{=}a\mathrm{-}b\) |
|
\(r\mathrm{=}a+b\) |
|
Constraints
Point |
Stresses (Pa) |
\(\mathrm{\forall }r\) |
|
\(r\mathrm{=}a\mathrm{-}b\) |
|
\(r\mathrm{=}a+b\) |
|
2.3. Uncertainties about the solution#
Analytical solution
2.4. Bibliographical references#
Guide VPCS - 1990 edition.