2. Benchmark solution#

2.1. Elastic solution#

In elasticity, for an infinite plate, comprising a hole of diameter \(a\), subjected to a loading \(P\) according to \(y\) to infinity, the analytical solution in plane stresses and polar coordinates \((r,\theta )\) is [bib1]:

\({\sigma }_{\mathit{rr}}\mathrm{=}\frac{P}{2}\left[(1\mathrm{-}{(\frac{a}{r})}^{2})\mathrm{-}(1\mathrm{-}4{(\frac{a}{r})}^{2}+3{(\frac{a}{r})}^{4})\mathrm{cos}2\theta \right]\)

\({\sigma }_{\theta \theta }\mathrm{=}\frac{P}{2}\left[(1+{(\frac{a}{r})}^{2})+(1+3{(\frac{a}{r})}^{4})\mathrm{cos}2\theta \right]\)

\({\sigma }_{r\theta }\mathrm{=}\frac{P}{2}\left[(1+2{(\frac{a}{r})}^{2}\mathrm{-}3{(\frac{a}{r})}^{4})\mathrm{sin}2\theta \right]\)

In particular, at the edge of the hole (\(r\mathrm{=}a\)): \({\mathrm{\sigma }}_{\mathrm{\theta }\mathrm{\theta }}=P[(1+2\mathrm{cos}2\mathrm{\theta })]\)

And along the \(x\) axis: \({\sigma }_{\theta \theta }\mathrm{=}{\sigma }_{\mathit{yy}}\mathrm{=}\frac{P}{2}\left[(1+{(\frac{a}{r})}^{2})+(1+3{(\frac{a}{r})}^{4})\right]\)

Numerically, for \(P\mathrm{=}1\mathit{MPa}\), and for an infinite plate, we have:

Point

Component

Calculation

\(\mathrm{MPa}\)

\(A\)

\(\mathit{SIXX}\)

\({\mathrm{\sigma }}_{\mathrm{\theta }\mathrm{\theta }}(r=a,\mathrm{\theta }=\mathrm{\pi }/2)\)

—1

\(B\)

\(\mathit{SIYY}\)

\({\mathrm{\sigma }}_{\mathrm{\theta }\mathrm{\theta }}(r=a,\mathrm{\theta }=0)\)

3

For a plate of finite dimension, the [bib1] charts make it possible to obtain the stress concentration coefficient, and we find that for a traction of \(1\mathrm{MPa}\), maximum \(\mathit{SIYY}\) is equal to approximately \(3.03\mathit{MPa}\) at point \(B\).

2.2. Bibliographical references#

  1. Boundary analysis of cracked structures and strength criteria. F. VOLDOIRE: Note EDF/DER /HI/74/95/26 1995

  2. Stress concentration factors. R.E. PETERSON Ed. J. WILEY p150