2. Benchmark solution#

2.1. Calculation method used for the reference solution#

  • The value of the axial displacement at the center of the disk (point A) is given by:

\({W}_{a}=-\frac{P{\phi }^{2}}{64\pi D}\times \frac{3+\nu }{1+\nu }\)

Where \(D=\frac{E{h}^{3}}{12(1-{\nu }^{2})}\)

  • The value of potential energy (at equilibrium) is given by:

\({E}_{p}=-\frac{1}{2}P{W}_{a}\)

  • The absolute value of potential energy per radian is:

\({e}_{p}=\frac{1}{2}\frac{P{W}_{a}}{2\pi }\)

2.2. Benchmark results#

  • Move to point \(A\):

\({W}_{a}=–0.4596\times {10}^{-3}m\)

  • Potential energy per radian:

\({e}_{p}=0.012799\mathrm{Nm}/\mathrm{rd}\)

2.3. Uncertainty about the solution#

Analytical solution.

2.4. Bibliographical references#

  1. R.J. ROARK and W.C. YOUNG Formulas for stress and strain, 5th edition, New York, McGraw-Hill, 1975